Neutron imaging at Penn State: Past, Present and Future

J. S. Brenizer Jr.*, M. M. Mench, A. K. Heller, and K. Ünlü

Pennsylvania State University

September 15, 2005
Outline

• Brief Introduction to Neutron Imaging
• History of Neutron Imaging
• Current Experimental NR Facilities
• Example of Recent Activity: Fuel Cell
• Future Plans
• Conclusions
Typical NR Equipment

FIG. 1 Typical Neutron Radiography Facility with Divergent Collimator

From ASTM E-748
Different Neutron Imaging Techniques

• Use higher or lower energy neutrons
 – cold, epithermal, fast neutrons
• Use activatable detector
 – make autoradiograph of activated detector
• Use an imaging plate detector
• Use a track etch film
• Rotate object to make neutron tomographs
• Use scattered neutrons to create image
NR Applications

• Most NR uses fall into one of the following categories
 – Qualitative Examinations
 – Relative Density Measurements
 – Quantitative Density Measurements
 – Three-dimensional Imaging
Radioscopic Applications

- Fluid flow in internal cavities
- Diesel fuel injection patterns
- Two-phase counter flow in heat pipes
- Fluid dynamics of molten metals
- Li-Al extent in tubular aluminum
- Dynamic combustion product formation
Neutron Imaging at Penn State

• Imaging with neutrons started in the early 1970’s
• Majority of work since 1984 has been radioscopy (real-time NR)
• Activity in NR diminished in early 1990’s - now very active
• Flow visualization remains primary effort
Important RSEC Upgrades

• 1965 conversion from MTR to TRIGA
 – Power upgrade from 200kW to 1000kW
 – Pulse capability up to 2000 MW

• 1970 extension of N-S rails
 – Core closer to beam ports

• 1971 thermal D_2O column installed
 – Beam port flux $\sim 10^{12} \text{ n/cm}^2\text{-s}$

• 1980’s collimator, shielding and thermal column modifications
Important RSEC Upgrades

- **1994** Reactor support structure modifications
 - Added rotational motion (360°)
 - Added lateral (east-west) movement
 - Permitted possibility of tangential NR beam

- **1997** D₂O thermal column installed with NR beam nosepiece

- **1997** Simple collimator installed
 - NR beam now tangential to core
 - Improved n/γ ratio
 - Neutron flux 2×10^7 n/cm²-s at 100 kW
 - Intensity overwhelmed existing shielding

- **1999** New shielding room installed
Important RSEC Upgrades

- **1999** Replaced old collimator with “temporary” aperture/filter/collimator
Current NR Facilities

- Reactor Core
- D₂O Tank
- Graphite Interface Box
- Pool Wall
- Door
- Cross Opening A
- Cross Opening B

Dimensions:
- 3.8
- 2.4
Current Facility

• 1999 collimator is satisfactory for now
• At first imaging position
 – Flux - 2.8×10^7 n/cm2-s @ 1000kW
 – ASTM E 803 L/D ratio – 115
 – Cd ratio (Au Foils) - 5
• ASTM E 545 Category 1 facility
• L/D ratio of 155 in normal imaging position
Neutron Imaging Research

- 1970’s - Jacobs, Kenney
 - Dynamic Radiography Using Neutrons
 - The Use of Coded Aperture Techniques in the Formation of Images with Scattered Radiation
- 1980’s - Hughes, Levine, Cimbala, Sathianathan
 - Use of Real-Time Neutron Radiography
 - Neutron Radiography as a Flow Visualization Tool
- 1990’s - Sathianathan, Cimbala, Brenizer
 - Theoretical Predication for Imaging Shock Waves in Gases Using Neutron Radiography
 - Flat Panel Imaging of Thermal Neutrons
- 2000’s - Cimbala, Brenizer, Mench, Ünlü
 - Comparison of Experiments and 1-D Steady-State Model of a Loop Heat Pipe
 - Neutron Imaging of Two-phase Transport in a Polymer Electrolyte Fuel Cell
 - The Nature of Flooding and Drying in Polymer Electrolyte Fuel Cells
The Nature of Flooding and Drying in Polymer Electrolyte Fuel Cells

P. A. Chuang, A. Turhan, K. Heller, J. Brenizer, and M. M. Mench*
*Penn State Fuel Cell Dynamics and Diagnostics Laboratory and Penn State Radiation Science and Engineering Center

T. Trabold
**General Motors - Fuel Cell Activities
Honeoye Falls, NY**

Third International Conference on Fuel Cell Science, Engineering, and Technology
Ypsilanti, Michigan
May 23-25, 2005
Anode side- fuel enters in flow channel (Hydrogen, Methanol, etc.)

Fuel Diffuses to catalyst site through backing layer and reacts to separate electrons from hydrogen

Hydrogen protons pass through ionically conducting polymer membrane

Free electrons are liberated and pass through conductive backing layer to external circuit

Free electrons reunite with hydrogen ions on cathode side, where an oxidizer (oxygen or air) and catalyst meet to yield H₂O

Image from:
Dr. Sukkee Um, Ph.D. Thesis Penn State University 2002
A key element in PEFC performance is keeping the electrolyte moist. Alternatively, the catalyst layer, gas diffusion layers, and gas channel must not be filled with liquid water, which will block gas-phase diffusion ("flooding"). Flooding causes poor performance and instabilities.

Channel level and *gas diffusion layer* flooding are different phenomena.

Side-view of gas diffusion layer complex fibrous hydrophobic/hydrophilic Structure**

Close-up of flooded gas diffusion layer*

**SEM by E.C. Kumbur of PSU FCDDL

PSU Neutron Imaging Capability

Current Status

- Radioscopic (video) resolution at ~130-150 μm, 30 fps
 - All digital imaging – no analog to digital conversation
 - CSF Thomson Intensifier with a CCD 1000 X 1000 X 10 bit
- Radiographic resolution at 30-60 μm
 - Resolution limited by geometric unsharpness
- DVD image data storage with movie capability **45 minutes at 30 frames/s**
- Customized software program to analyze data including water distribution, P(t), V(t), I(t), etc.
- Tests recorded digitally; broken down by individual frames
- Quantification of water mass
 - In each frame
 - Selective area plots of water mass vs. time
 - False color map to water mass
Fuel Cell Setup in Front of Neutron Camera

- Active in NR for fuel cells since 2002
- Breazeale Nuclear Reactor, PSU
- Reactor power: 1 GW
- Neutron Flux: 3×10^7 neutron/cm²-sec
- PSU NR capability:
 - 30 fps at 130 μm
 - Digital image
 - Continuous data storage for 40 mins
Liquid Water Thickness Quantification

- Visualization of liquid water down to 12.7 μm thickness.

- We can see liquid water, but not gas-phase water in vapor form.
Water Calibration Verification

100, 180, 255, 330, 405 µm

3100 µm

0 µm

100, 180, 255, 330, 405 µm
With a masking technique, liquid water under the landings and under the channels is calculated.

Low current **channel**, 269mg

Low current **landing**, 257mg
Analysis of Flooding Threshold

- Different cell was operated at steady state where significant flooding was observed. Then, the cell control temperature was increased (all else the same) to 85 °C until flooding is eliminated.
- Images taken for flooded and non-flooded conditions
Analysis of Flooding Threshold

80°C – flooded (Wet)
Voltage: 0.509V; Water = 381mg

85°C - non-flooded (Dry)
Voltage: 0.624V; Water = 206 mg

Difference: 1.5 mg/mV
Water buildup at 90° turns in flow channels is common. Accumulation caused by recirculation of flow at walls and corners, as well as surface wetting of flow channel. Low local performance can also cool the landing, inducing condensation on GDL surface.

Image from:
N. Pekula, M.S. Thesis
Penn State University 2002
In this video, anode flow is increased, flushing water from channels.

- Droplet velocity is not constant, due to surface tension and drag.
- Droplet shape changes continually throughout movement.
- Selected droplet movement: Anode flow rate at 0.4 m/s, single droplet observed with velocity range of 0.08 to 0.134 m/s, indicating *slug flow*.
- Homogeneous model is *not* appropriate for low power *channel-level* flooding.
Status of Future Work

• Neutron computed tomography
• Cold source design
• New neutron beam port design and layout
• Neutron beam hall expansion
• Beam port installations
• Cold source and guide tube installation
 – Cold Neutron Prompt Gamma Activation Analysis
 – Neutron-Induced Fission Fragment Analysis
 – Neutron Reflectometer
 – Neutron Powder diffractometer
 – Cold neutron imaging
Conclusions and Future Work

• RSEC has long history of neutron imaging
• NR facilities still undergoing major improvements
• Need to interleave improvements with ongoing research and service work
• Planned expansion will yield a first-class neutron imaging facility