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Abstract 
 

Time-of-flight neutron spectroscopy will be used to examine the local potentials of 
methane adsorbed in metal-organic frameworks. This experiment illustrates the important 
phenomenon of neutron scattering from tunneling molecules. We shall discuss all aspects 
of the experiment, from sample preparation and the choice of instrumental setup through 
to data treatment and interpretation of results. 
 
 
 
 
 
 

 

 
Metal-organic framework material  

helps with methane storage in 
 vehicles powered by natural gas. 
(Image credit: Texas A&M Univ.) 

 



I. Introduction 
 

Natural gas, consisting primarily of methane (CH4), is an excellent fuel that burns cleaner 
than all other fossil fuels. Recent years have witnessed a rapid increase of newly discovered 
natural gas reserves worldwide, and a dramatic decrease in the natural gas to gasoline price 
ratio. Natural gas is thus widely regarded as a “bridge” fuel to help us through the transition 
from traditional fossil fuels to future clean/renewable energy (e.g., solar energy). Despite 
its wide application in both industrial and domestic markets, the usage of natural gas in 
vehicles is rather limited, largely due to its low volumetric energy density under ambient 
conditions. Currently there is great interest in promoting natural gas for on-board 
applications [e.g., see the U.S. Department of Energy’s research program "Methane 
Opportunities for Vehicular Energy (MOVE)", http://arpa-e.energy.gov/?q=arpa-e-
programs/move], and efficient methane storage technology is actively pursued. Common 
natural gas storage methods including liquefaction and compression are relatively mature 
technologies, but they suffer due to the extreme operating conditions (200-300 bar for 
compressed methane, and 112 K for liquefied methane) and the related energy cost. An 
alternative technology, which could potentially be safer and cheaper, is to use porous 
adsorbent materials to help store methane in a fuel tank under relatively mild conditions.  
 
Emerging as a new type of porous material, metal-organic frameworks (MOFs), which 
consist of metal ions or metal-containing clusters linked by organic ligands through metal 
coordination bonds, have attracted much attention for their promising applications as 
adsorbent materials for methane storage (see: Chem. Soc. Rev. 2014, 43, 5657; Nature 
2015, 527, 357). This is largely because of their unique characteristics: highly crystalline 
structures, nanometer-sized pores, ultrahigh porosities, and functionalizable pore walls. 
Thus far, a dozen or so MOFs have been found to exhibit relatively high methane storage 
capacities, and further efforts are being devoted to the design and synthesis of new MOFs, 
emphasizing improved methane storage performance. To facilitate this research, it is 
critical to understand the fundamentals of methane-MOF interactions.  
 
Neutron scattering is an excellent probe for studies of methane adsorption in MOFs. 
Neutron diffraction measurements can directly reveal where the methane molecules are 
adsorbed/stored, and neutron spectroscopy can help us investigate the strength of the 
methane-framework interaction, as we shall see in this experiment. We are going to 
examine two iconic metal-organic framework materials: MOF-5 (metal-organic 
framework-5, see Nature 1999, 402, 273) and UiO-66 (UiO: University of Oslo, see JACS 
2008, 130, 13850), whose structures are schematically shown in Figure1. The metal centers 
in MOF-5 and UiO-66 are Zn4O and Zr6O4(OH)4, respectively, whereas the organic linkers 
in the two MOFs are the same, namely, benzene-1,4-dicarboxylate (BDC).  
 
Previous neutron diffraction studies have elucidated the methane adsorption sites in these 
MOFs. In MOF-5, the first and strongest binding sites for methane lie in the so-called “cup” 
site of the ZnO4 clusters with the orientation of the methane molecule being well resolved, 
where one of the CH-bonds is along the 3-fold axis (Fig.2, left). Similarly, methane 
molecules were preferentially adsorbed in UiO-66 at the “cup” site of the Zr6O4(OH)4 metal 
center (Fig.2, right), with 3-fold local symmetry. Carefully synthesized MOF-5 crystals 



can have nearly “perfect” structure, and thus represent a model system to study methane 
tunneling. In contrast, UiO-66 samples obtained from a typical synthesis route usually 
contain ~10% linker vacancies, which would make the methane tunneling data analysis 
more complicated. 
 

              
 
Figure 1. Two metal-organic frameworks studied in this experiment: MOF-5 (left) and UiO-66 
(right). The metal-O clusters are plotted as ZnO4 and ZrO8 polyhedra. Large spheres at the 
framework center denote the pores within the MOF structures. Hydrogen atoms on the organic 
linkers are omitted for clarity. 
 
 
 
 
 

               
 
 
Figure 2.  (Left) Excess neutron scattering-length density superimposed with the ZnO4 clusters of 
the MOF-5 host structure, indicating the location of cup-sites for the first methane adsorption. 
(Right) Methane adsorption on the Zr-metal centers in UiO-66. Both were derived from neutron 
diffraction data. 



We will be using the Disk Chopper Spectrometer at the National Institute of Standards and 
Technology Center for Neutron Research to probe dynamics and the local potential at the 
methane adsorption site. After reading the background material you should be able to 
choose an appropriate spectrometer configuration to probe the rotational tunneling or 
temperature dependent diffusional dynamics present in the methane:MOF system. 
 
The neutron has several properties that enable scattering experiments to measure properties 
of materials that other techniques can measure with much less precision or not at all. 
Neutrons with wavelengths on the order of interatomic spacings also possess energies on 
the same order as those characteristic of phonons and intermolecular interactions; for 
example, a 1.8 Å neutron has an energy of ~25 meV (~200 cm-1) and speed ~2200 ms-1. 
This means that structural and temporal information can be measured simultaneously. 
 
The reader is reminded that the scattering of neutrons is usually treated as the sum of two 
parts, known as coherent and incoherent scattering. To understand why such a separation 
is performed recall that the strength of the scattering from nuclei of the same element can 
vary (and generally does vary) with spin and/or isotopic species. Hence when a neutron is 
scattered by a collection of nuclei the interference between the different scattered waves is 
normally neither complete nor completely absent. For this reason the double differential 
cross section 2[d / d d ]σ Ω ω , which describes the probability that neutrons are scattered into 
solid angle dΩ and energy transfer window d( ω ), is normally separated into two terms. 
The first term is the coherent part, which contains all of the interference effects such as 
Bragg scattering and small angle scattering. The second term is the incoherent scattering, 
which represents the scattering from individual nuclei and is approximately isotropic. For 
a single element 2[d / d d ]σ Ω ω  can be expressed as  
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where ki and kf are the magnitudes of the initial and final neutron wave vectors, σcoh and 
σinc are the coherent and incoherent scattering cross sections, and S(Q, )ω and incS (Q, )ω  
are the corresponding scattering functions which depend only on the momentum transfer 

Q  (or wave vector transfer Q) and the energy transfer ω . (Note that in general Q is a 
vector but since we shall be working with a powder with cubic crystal symmetry, and no 
preferred orientation, all that need concern us in this experiment is the magnitude of the 
wave vector.) The most important incoherent scatterer is hydrogen for which σinc= 80.3 
barns/atom whereas σcoh is only 1.76 barns/atom (1 barn = 10-24cm2). Since the incoherent 
scattering cross section of hydrogen is much larger than those of almost all other nuclei, it 
is often reasonable (as a first approximation) to neglect the coherent scattering in systems 
that contain a relatively large fraction of hydrogen atoms.  

 

Can you explain the usefulness of deuteration, given that σcoh(deuterium) and 
σinc(deuterium) are 5.6 barns/atom and 2 barns/atom, respectively? 



Elastic neutron scattering is scattering with no change in neutron energy, i.e. with 0ω= . 
On the other hand, inelastic neutron scattering is scattering with a change in neutron 
energy, i.e. with 0ω≠ . Quasielastic neutron scattering (QENS) is a type of inelastic 
scattering that involves the Doppler-like broadening of otherwise elastically scattered 
neutrons due to reorientational or diffusive motions of atoms in the target material. Thus 
QENS is a special kind of inelastic neutron scattering. In this experiment you will use 
neutron scattering to perform low energy inelastic measurements on methane tunneling 
modes and to measure corresponding QENS spectra at higher temperatures. 
 
We shall first describe the samples to be used for the experiment, and the equipment that 
will be used to bring them to the desired measurement conditions (methane concentration 
and temperature). The next section provides a brief discussion of the spectrometer as well 
as matters to be considered in choosing the incident wavelength for this experiment. We 
then describe the reduction of the data to obtain the scattering function, and we follow with 
some words about the scattering that is expected for these measurements. This then sets 
the scene for the analysis and discussion of the experimentally measured scattering 
function. 
 

II. The samples 
 
We have synthesized somewhat more than 2 grams of deuterated MOF-5, and roughly 1 
gram of deuterated UiO-66. In preparation for the summer school, each sample will have 
been loaded into a vanadium pressure cell with a valve and gas-line attached. Before the 
start of each group’s experiment, we will have mounted and cooled one of the samples in 
a low temperature environment (helium cryostat or closed cycle refrigerator) and selected 
background measurements will have been completed. The group’s experiment may or may 
not include bare samples in addition to the samples loaded with methane using a home-
made gas loading system. Through the night we shall collect data at temperatures and 
wavelengths decided by the group. 

 
To reduce the data we will also need a detector normalization file obtained using a sample 
of vanadium metal, plus a run with the beam closed (a type of background, or “dark 
count”). These runs will have been performed before the start of the summer school since 
there will not be time to complete them once the school is underway.  

 

Apart from indium, what materials might be used to seal sample containers? 
 

Why do we typically use aluminum for sample containers and cryostat windows? 
 

 

Why do we use vanadium to normalize the data from different detectors? Hint: σcoh= 
0.02 barns/atom, σinc= 5.19 barns/atom. 
 



 
III. The spectrometer 

 
We shall be performing this experiment using the Disk Chopper Spectrometer (DCS), 
which is a so-called “direct geometry” (fixed incident energy) time-of-flight spectrometer. 
In this type of instrument (figure 3) bursts of monochromatic neutrons strike the sample at 
equally spaced times. The energies of the scattered neutrons are determined from their 
arrival times at the detectors, since we know when the pulses were created as well as the 
distances DPS from the pulsing device to the sample and DSD from the sample to the 
detectors. There are two ways to produce a monochromatic pulsed beam at a steady state 
neutron source. One method is to use a single crystal to monochromate the white beam and 
a mechanical “chopper” to pulse it; the other method is to use multiple choppers, such as 
the seven (!) choppers of the DCS. 
 

 
Given the initial and final energies of the neutrons, Ei and Ef, the energy transfer 

i fE Eω= −  is trivially obtained. Knowing the scattering angle 2θ we can also calculate 
the magnitude of the momentum transfer to the sample, Q : 

 2
n i f i f( Q) 2m E E 2 E E cos 2 = + − θ   (2) 

where mn is the mass of the neutron. (This follows from the definition Q��⃑ = k𝚤𝚤���⃑ − k𝑓𝑓����⃑   and 
the relationship between the magnitude of a neutron’s wave vector, k, and its energy E: 

2 2
nE k / 2m= h .) 

 

Figure 3. A schematic 
illustration of the scattering 
geometry for a direct 
geometry time-of-flight 
spectrometer such as the 
DCS. 

A monochromatic pulsed beam of neutrons can in principle be created using two 
choppers.  How does that work? Can you think why more than two choppers might 
be needed and/or desirable? 



The data acquisition system separately accumulates neutron counts for each of the 913 
DCS detectors. Furthermore the time between pulses, T, is normally divided into 1000 time 
channels of equal width ∆t = 0.001T and each neutron event in a given detector is stored 
in one of these time channels according to its time of arrival at the detector. Thus the data 
acquisition system generates a two-dimensional array of counts I(i,j) as a function of 
detector index i and time channel index j. This array is accumulated in a “histogramming 
memory” which is resident in the data acquisition computer. At the end of each run cycle 
the array is saved, along with other pertinent information, to the hard disk of the instrument 
computer. 
 
With the sample environment mounted on the spectrometer, we can control and monitor 
the temperature remotely, but care must be taken not to exceed 110 K so that methane does 
not desorb from the sample. The choice of incident wavelength is critical to the experiment 
and several factors must be considered. These include intensity at the sample (which peaks, 
remaining roughly constant, between ~2.5 and ~4.5 Å, see Appendix A), the width of the 
elastic energy resolution function (which roughly varies as 1/λ3), the available Q range 
(which varies as 1/λ), and concerns about “frame overlap” problems. A related 
consideration is the available range in sample energy gain (neutron energy loss). 
 

 
Overnight you will be collecting data. To this end, you will need to define a “sequence” 
consisting of several “runs” plus at least one change of sample temperature and probably 
wavelength. Each run is divided into a set of “cycles” that are of defined lengths of time. 
At the end of each cycle the temperature is recorded and the data are backed up to the disk. 
Having defined the runs we shall start the overnight sequence of measurements. Next day 
we shall stop the measurements and start into the data reduction. 
 
In the experimental runs we shall collect intensity histograms I(i,j) for the sample at at least 
two temperatures. Using previously acquired intensity histograms for a vanadium sample 
and for a “dark count” run with the beam shutter closed, we shall reduce the data to obtain 
the scattering function S(Q, )ω , and various cuts in both Q and ω. 
 

IV. Data reduction 
 
In this section we shall simply indicate some of the more important steps in the data 
reduction process.  We shall go into greater detail in our discussions at the time that the 
data reduction takes place. 
 

What is the maximum theoretical sample energy gain that can be measured when 
the incident energy is Ei, and how long would it take to measure the intensity of 
neutrons scattered with this change in energy? 



In each experiment, the measured scattering includes intrinsic scattering from the sample 
plus background scattering intensity. Before we do any data analysis we need to subtract a 
time-independent background from each of the runs. 
 

 
 
Neglecting effects such as self-shielding and multiple scattering the scattering in detector 
i and time channel j may be related to the corresponding double differential cross section 

2
ij[d / d dt]σ Ω  (note that this is per unit time, not energy) in the following fashion: 
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where ∆Ω, the solid angle subtended by detector i, and ∆t, the width of time channel j, are 
(for these measurements) presumed to be independent of i and j respectively, Nm is the 
number of sample molecules in the beam, ηij is the efficiency of detector i for neutrons 
detected in time channel j, and IBM and ηBM are respectively the counts and the efficiency 
of the beam monitor (situated upstream of the sample). 
 
Since we are not trying to extract an absolute cross section we can neglect the multiplicative 
constants in the above equation, but we should not ignore the detector efficiency function 
ηij. Since all of the detectors are to first order identical it is not unreasonable to treat ηij as 
the product of two terms, a function ηi0 which represents the efficiency of detector i for 
elastically scattered neutrons and a detector-independent function fj that describes the 
energy dependence of the efficiency of the detectors. The correction for differences in 
detector response, i.e. the determination of ηi0, is performed using the results of a 
measurement with a vanadium sample. 
 
The correction of the data for the energy dependence of the efficiency is achieved by 
calculation, knowing the various factors that affect the probability that a neutron is 
absorbed within a detector. 

 
To improve statistics, we may define several detector groups, each of which includes 
detectors within a specified range of angles. The differential cross section 2[d / d dt]σ Ω  for 
all detectors in a group will be summed and divided by the number of detectors in the 
group. Having obtained a quantity proportional to 2[d / d dt]σ Ω  we must now compute 

2[d / d d ]σ Ω ω  and finally S(Q, )ω . Since a neutron’s energy E is related to its time-of-flight 
t over a fixed distance as 2E t−∝ , it follows that 3dE t dt−∝ . Hence 

Where does the time independent background come from? 

What are these factors? 
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To obtain S(Q, )ω we simply divide by kf (see eq. 1). Equivalently we multiply by another 
factor of t. 

 
If a system in thermodynamic equilibrium can exist in a number of thermodynamic states 
and we consider two such states separated by an energy difference ω , the probability that 
the system is in the lower energy state is greater by a factor exp( / kT)ω  than the 
probability that it is in the higher energy state.  From this it can be shown that for systems 
in thermodynamic equilibrium the scattering function S(Q, )ω  satisfies the so-called 
“detailed balance” relationship: S( Q, ) exp( / kT)S(Q, )− −ω = − ω ω . Since we shall be 
fitting the data to a theoretical form that is symmetric in ω  we shall first “symmetrize” 
the experimental S(Q, )ω  by multiplying it by exp( / 2kT)− ω . 

 
Having reduced the experimental data to a symmetrized scattering function it is time to 
relate the results to theory. 
 
 
 

V. Theory 
 
Consider pure methane. In the phase II crystal structure there are actually two different 
types of methane molecular environments below T = 20 K. These molecules show two 
kinds of rotational excitations: 75% of the molecules are orientationally ordered lying in 
the deep minima of a strong potential, while the other 25% are orientationally disordered. 
The high resolution neutron scattering spectra comprises of tunneling lines at 75 µeV and 
145 µeV with a librational feature at 1.07 meV (figure 4(a)) [Asmussen]. Much research 
has been performed to measure and understand the dynamics of tetrahedral molecules in 
various environments. Rotational wave functions can be constructed considering the 
tetrahedral symmetry of the CH4 molecule with the corresponding total spin of I=2 (ortho), 
I=1 (meta) and I=0 (para) having representations A (five times one-fold degenerate), T 
(three times triply degenerate) and E (one time doubly degenerate), respectively. The 
rotational levels of the hindered rotor molecules are shifted strongly as compared with the 
free rotor molecules (figure 4(b)) and we can immediately see that the free rotor is 
responsible for the peak above 1 meV, while the low energy features arise from the 
tunneling multiplet that occurs due to wavefunction overlap between adjacent deep 
potential minima. (Note that A↔E transitions are forbidden since they require a nuclear 
spin change of 2.) In addition to the classically forbidden rotations, there are classical 
librational motions of the molecule within the potential minimum. These give rise to 
features above 5 meV. 

Is symmetrization of S(Q, )ω  likely to be a larger effect at low or high temperatures? 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. (a) Momentum transfer dependence of the neutron transitions of phase II methane. 
[Asmussen]. Data were taken on IRIS with the Graphite (002) reflection. (b) Rotational level 
scheme of methane in solid phase II (after Grieger). Parenthesis (I,m) denotes the total nuclear spin 
I and the multiplicity m of the levels. The multiplicity of the rotational states is m(2I+1). 
 
 
In general, there are 9 possible transitions between energy levels for a regular tetrahedral 
molecule in a potential field that has no specific symmetry. These are shown in Figure 5. 
However in a symmetric field this number is much reduced and the energy level diagram 
and tunneling spectra are simplified. For a tetrahedral molecule in a tetrahedral (cubic) 
field, the T levels are degenerate and hence only two transitions (A↔T and T↔E) are 
observed as shown above for orientationally ordered methane. 
 
In the current case we need to consider a tetrahedral molecule in a trigonal field, since that 
is the symmetry of the first methane adsorption site in MOF-5/UiO-66. In this case Huller 
constructed an energy level scheme which is controlled by two matrix elements, h and h4 
(see Huller). These two variables can then be related to the barriers to rotation about both 
the three equivalent three-fold axes and the unique direction through the center of the cup 
site.  
 



 
  
 Figure 5. 
 A schematic illustration of 
the possible tunneling 
transitions for a general 
tetrahedral molecule. 
 
 
 
 
 
 
 
 
 
 

 
The matrix elements are related to the barrier to rotation about the specified axes and the 
relative intensities may be arrived at through a lengthy set of integrals (see Huller). For the 
specific case of a tetrahedral molecule in a trigonal symmetric field, the transitions 1 
through 5 have relative ratios 10:5:2:8:4. Further, the spherical average of the Q-
dependence has been shown to be related to a series of spherical Bessel functions [see 
Press]. 
 

 

 
 

 
Figure 6.  A schematic illustration of the tunneling transitions for a methane molecule in a trigonal 
field as expected for the first adsorption site in MOF-5 (right). The energy level for each manifold 
is given as a function of the matrix elements h and h4. 
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Upon heating the MOF-CH4 complex to temperatures up to 110 K, the populations of the 
methane rotational levels gradually redistribute according to Boltzmann statistics and 
ultimately there is enough energy in the system to overcome the classical barrier to rotation 
and a quasielastic feature will develop in the spectra.  
 
Most quasielastic experiments are performed on systems that predominantly scatter 
neutrons incoherently. The incoherent scattering function is the space and time Fourier 
transform of the self-correlation function sG (r, t)  which (classically) represents the 
probability that a particle that was at the origin at time t = 0 is at position r at time t.  

 
A common way of expressing incS (Q, )ω


 is in terms of the intermediate self scattering 

function sI (Q, t)


, which is the space Fourier transform of  sG (r, t) : 
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An illustrative model for sG (r, t)  (though inappropriate in the context of the present 
experiment) is that of simple Brownian diffusion, where times of observation are much 
longer than typical times between collisions. Fick’s Law governs this type of diffusion: 

 2
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t
∂
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∂

 
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where D is the diffusion constant. A solution to this equation is given by a self-correlation 
function of the form 
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the space Fourier transform of which is 
 2

sI (Q, t) exp( Q Dt)= −


. (8) 
Since this represents an exponential decay in time, the time Fourier transform yields a 
Lorentzian lineshape: 
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that is centered at zero energy transfer and has a full width at half maximum height 
(FWHM), Γ, given by 

 22DQΓ = . (10) 
 
In the current situation, we might expect that the methane undergoes numerous types of 
reorientation: three fold jumps about the ‘unique’ axis; rotational diffusion about the 
‘unique’ axis; isotropic jump reorientation between all four sites; preferred jump 

Use a similar definition to relate the coherent scattering function to a (different) space-
time correlation function. Why is it easier to formulate models of atomic motion using 
incoherent scattering? 



reorientation between pseudo-equivalent sites; or isotropic rotation on a sphere. These are 
not the only possibilities and complications may arise if the rotational motion couples with 
translational motions. 
 
To simplify the analysis, we will assume an isotropic rotational diffusion model and work 
through to the expected characteristics of the scattering law. To first order, the rotation of 
methane can be considered as the diffusion of four rigidly coupled protons at radius 
R=1.093 Å from the center of mass. In a classical treatment the angular motion of each 
molecule satisfies Fick’s Law and a powder average can then be expressed as a delta 
function and a sum of Lorentzians: 
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where 2
0 0( ) ( )=A Q J QR is often called the Elastic Incoherent Structure Factor (EISF). 

The correlation time (or equivalently, twice the reciprocal of the FWHM) is related to the 
diffusion constant DR through 

    2 1
( 1) RD

τ = =
Γ +

 
         (12) 

and j  is a spherical Bessel function. Note that the FWHM is Q independent.  
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VI. Data analysis 
 
As mentioned earlier, the MOF-5 sample has a nearly defect-free crystal structure, 
representing a model system for tunneling study, and thus the corresponding data analysis 
should be relatively straightforward. We will work on MOF-5 data first, and then look into 
the data for UiO-66, which is complicated because of structural defects. 
 
We will take a few detours on the route to obtaining a symmetrized form of the 
experimental scattering function, S(Q, )ω . We will sum data to obtain a view of the powder 
diffraction and we will also sum to obtain a generalized vibrational density of states that 
we will then briefly compare to the expected librational features. 
 
The next step will be to fit the S(Q, )ω  data in the tunneling regime as a function of Q. We 
suggest that you try fitting each Q group to a series of phenomenological Gaussians and 
possibly a background function. Extract the fitted parameters. 
 



Following the method of Smalley et al., we can then use the following figure of tunnel 
splitting (figure 7) to derive the rotational barriers (given that this plot was obtained with a 
mean parameter A =-3.8B). Note that the rotational constant, B, for methane is 0.656 meV. 
Using the relationships 4 158

39 9V A A= − −   and 4 158
39 27V ' A A= − +  , we can extract 

rotational barriers for the unique and other three-fold axes, V and V’, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Tunnel splitting parameters as a function of the ‘A3’ parameter. 
 

 
If you have taken data at higher temperatures, use the isotropic rotational diffusion model 
described in the previous section (i.e. an elastic delta function and just one broader 
Lorentzian) to fit the ‘empty sample’ background subtracted data as a function of Q. In an 
actual experiment the scattering function is broadened with the instrumental resolution 
function so the model function must be numerically convoluted with the instrumental 
resolution function. Having fitted the experimental data to the model, the next step is to 
make plots of the Lorentzian line parameters as functions of Q.  
 
 
 
 

(1) How well do the Gaussians fit? 
(2) Assign the features to the rotational transitions for a tetrahedron in a trigonal field 
(3) Do the ratios of intensities agree with expectations? 
(4) Sum the rotational transitions at each Q. How does this compare with the expected 

form factor? 
(5) Calculate values for h and h4. 
(6) Estimate the barriers to rotation about the hard and soft axes. 
(7) Methane on graphite has values of  25 meV and 21 meV, respectively. Comment. 
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VII. Concluding remarks 
 
In section V we discussed a scattering function that corresponds to a very simple model of 
rotational diffusive motion. The situation is more complicated when a system displays 
more than one type of diffusive motion, or multiple rotational axes. If the various motions 
are uncoupled, the intermediate scattering function is a product of the individual 
intermediate scattering functions so that the scattering function is a convolution of the 
scattering functions for the individual motions. The situation simplifies considerably if 
additional motions occur on very different time scales. Motions that are much slower than 
the time scale represented by the instrumental resolution show up as elastic scattering. On 
the other hand motions that are much faster give rise to an essentially flat background. 
Different instruments, with different dynamical windows and different resolution 
capabilities, are needed to observe such motions. For example motions that are too slow to 
see using the DCS may well show up if the sample is put on the backscattering spectrometer 
HFBS. Conversely motions that are fast by DCS standards can usefully be studied using 
the filter analyzer neutron spectrometer (FANS). 
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(8) How well does the single Lorentzian fit? 
(9) How do the Lorentzian parameters behave? 
(10) Can you extract a rotational diffusion constant or correlation time? 
(11) If you have access to other temperatures, can you extract an activation energy? 
(12) By taking a ratio of elastic to total scattering and hence extracting A0, can you fit 

the expected functional form of the Bessel function?  
(13) Does the methane perform isotropic rotational diffusion? Comment. 
 



 Appendix A. Instrument Characteristics for the Disk Chopper Spectrometer 

(http://www.ncnr.nist.gov/instruments/dcs) 
 
The white beam from the cold neutron source is cleaned of high energy neutron and gamma 
ray contamination using an “optical filter”. This is basically a bent guide which ensures 
that there is no line of sight from the source to points beyond the local shutter.  A cooled 
graphite filter removes short wavelength (~0.5 Å) neutrons that remain in the beam, 
permitting measurements at wavelengths down to roughly 1.5 Å. 
 
A clean, pulsed, monochromatic neutron beam is produced using seven disk choppers. 
Chopper speeds may be varied from 1200 to 20000 rpm. The pulsing and monochromating 
choppers have three slots of different widths. In principle this permits three choices of 
intensity and resolution at a given wavelength and master chopper speed.  
 
The measured intensity at the sample is reproduced below. Red and blue points correspond 
to measurements using different chopper slot widths. 

 

 

Why are there dips in the measured flux at wavelengths near 3.335 and 6.67 Å?  

http://www.ncnr.nist.gov/instruments/dcs


The resolution of the instrument is approximately triangular and essentially independent of 
beam height (up to 10 cm) but depends slightly on the width of the beam. Hence samples 
should ideally be tall and thin rather than short and fat. 
 
The measured elastic energy resolution, for the same choices of chopper slot widths as in 
the intensity plot above, is shown in the figure below. Lines represent fits to the 
measurements.             

 
An oscillating radial collimator, inside radius 200 mm, outside radius 300 mm, blade 
separation 2°, is used to reduce the scattering from sample environment structures. 
 

 
There are 913 six-atmosphere 3He detectors covering an essentially continuous solid angle 
of ~0.65 steradians and arranged in three banks: 
 Middle bank detector scattering angles range from -30° to -5° and from +5° to +140° 
 Upper and lower bank angles range from -30° to -10° and from +10° to +140° 

 
The flight distance from sample to detectors is 4010 mm. The flight chamber is purged 
with argon. 

Can you explain how the radial collimator works, and why it is oscillated? 

Why is the flight chamber purged with argon? 



Appendix B. Possible Experiments on the Disk Chopper Spectrometer 
 
Phenomena that can be investigated include: 
 Translational and rotational diffusion processes, where scattering experiments provide 

information about time scales, length scales and geometrical constraints; the ability to 
access a wide range of wave vector transfers, with good energy resolution, is key to the 
success of such investigations 

 Low energy vibrational and magnetic excitations and densities of states 
 Tunneling phenomena 
 Low Q powder diffraction 

 
Research areas include: 
 Chemistry --- e.g. clathrates, molecular crystals, fullerenes 
 Polymers --- bound polymers, glass phenomenon, confinement effects 
 Biological systems --- protein folding, protein preservation, water dynamics in 

membranes  
 Physics --- adsorbate dynamics in microporous/mesoporous systems (MOFs, zeolites, 

clays etc.) and in confined geometries, metal-hydrogen systems, glasses, magnetic 
systems 

 Materials --- negative thermal expansion materials, low conductivity materials, 
hydration of cement, carbon nanotubes, proton conductors, metal hydrides, hydrogen 
and methane storage, carbon dioxide capture 

 

Appendix C. Some useful properties and relationships 
 

Neutron properties 
 
Mass:   mn = 1.660×10-24 g 
Electric charge: 0  
Spin:   ½ 
Magnetic moment: -1.913 nuclear magnetons 
 
Exact relationships 
 

h
mv

λ =   21
E mv

2
=   

2
k

π
=

λ
 

 
Approximate relationships 
 

2
81.8

E[meV]
( [ ])

=
λ Å

;    
3.956

v[mm / s]
[ ]

µ =
λ Å

;    2E[meV] 2.07(k[ ])= -1Å ;    -11 meV=8.1 cm  

 



Appendix D. Spin Incoherence 
 
The strength of the scattering of a neutron by a nucleus, i.e. the neutron scattering length,  
depends on the spin of the compound nucleus. For an isotope with nuclear spin I the 
combined “nucleus + neutron” spin, I′, has two possible values, I+ = I+½ and I− = I-½, with 
which we associate two possible scattering lengths b+ and b−. Each of the possible values 
of the combined spin has 2I′+1 possible spin states, i.e. 2(I+½)+1 = 2I+2 and 2(I-½) +1 = 
2I states respectively, for a total of 4I+2 spin states. 
 
If the neutron and nuclear spins are randomly orientated, all states are equally probable, 
and the probabilities of the combined + and - spin states are p+ = (I+1)/(2I+1) and 
p−=I/(2I+1) respectively. 
 
The mean scattering length, <b>, and the mean of the scattering length squared, <b2>, 
 

           <b> = p+b+ + p−b−      and     <b2> = p+(b+)2 + p− (b−)2 

 
are used to calculate the coherent and incoherent bound cross sections. These cross sections 
are defined as follows: 

             2
coh 4 bσ = π   and ( )22

inc 4 b bσ = π − . 
Working through the numbers for hydrogen and deuterium is instructive. The relevant 
scattering lengths for hydrogen are b+ = 1.086×10-12 cm and b− = -4.751×10-12 cm, whereas 
the values for deuterium are b+ = 0.951×10-12 cm and b− = 0.095×10-12 cm.  
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