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LECTURE 6: Inelastic Scattering



We Have Seen How Neutron Scattering 
Can Determine a Variety of Structures
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but what happens when the atoms are moving?
Can we determine the directions and 
time-dependence of atomic motions?
Can well tell whether motions are periodic?
Etc.

These are the types of questions answered
by inelastic neutron scattering

crystals
surfaces & interfaces disordered/fractals biomachines



The Neutron Changes Both Energy & Momentum 
When Inelastically Scattered by Moving Nuclei



The Elastic & Inelastic Scattering Cross 
Sections Have an Intuitive Similarity

• The intensity of elastic, coherent neutron scattering is proportional to the 
spatial Fourier Transform of the Pair Correlation Function, G(r) I.e. the 
probability of finding a particle at position r if there is simultaneously a 
particle at r=0

• The intensity of inelastic coherent neutron scattering is proportional to 
the space and time Fourier Transforms of the time-dependent pair 
correlation function function, G(r,t) = probability of finding a particle at 
position r at time t when there is a particle at r=0 and t=0.

• For inelastic incoherent scattering, the intensity is proportional to the 
space and time Fourier Transforms of the self-correlation function, Gs(r,t)
I.e. the probability of finding a particle at position r at time t when the 
same particle was at r=0 at t=0



The Inelastic Scattering Cross Section
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Examples of S(Q,ω) and Ss(Q,ω)

• Expressions for S(Q,ω) and Ss(Q,ω) can be worked out for a 
number of cases e.g:
– Excitation or absorption of one quantum of lattice vibrational 

energy (phonon)
– Various models for atomic motions in liquids and glasses
– Various models of atomic & molecular translational & rotational 

diffusion
– Rotational tunneling of molecules
– Single particle motions at high momentum transfers
– Transitions between crystal field levels
– Magnons and other magnetic excitations such as spinons

• Inelastic neutron scattering reveals details of the shapes of 
interaction potentials in materials



A Phonon is a Quantized Lattice Vibration

• Consider linear chain of particles of mass M coupled by 
springs. Force on n’th particle is

• Equation of motion is  
• Solution is:
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Inelastic Magnetic Scattering of Neutrons

• In the simplest case, atomic spins in a ferromagnet precess 
about the direction of mean magnetization

∑

∑∑

=−=

+=−= +

l

lqi
qqq

qq
q

qll
ll

elJJJJS

bbHSSllJH

rrr
h

h
rrrr

.
0

0'
',

)(   re       whe)(2

with 

.)'(

ω

ω

exchange coupling
ground state energy

spin waves (magnons)

tferromagne afor relation  dispersion  theis   2Dqq =ωh
Fluctuating spin is 
perpendicular to mean spin 
direction => spin-flip 
neutron scattering

Spin wave animation courtesy of A. Zheludev (ORNL)



Measured Inelastic Neutron Scattering Signals in Crystalline
Solids Show Both Collective & Local Fluctuations*

Spin waves – collective
excitations

Local spin resonances (e.g. ZnCr2O4)

Crystal Field splittings
(HoPd2Sn) – local excitations

* Courtesy of Dan Neumann, NIST



Measured Inelastic Neutron Scattering Signals in Liquids 
Generally Show Diffusive Behavior

“Simple” liquids (e.g. water) Complex Fluids (e.g. SDS)

Quantum Fluids (e.g. He in porous silica)



Measured Inelastic Neutron Scattering in Molecular 
Systems Span Large Ranges of Energy

Vibrational spectroscopy
(e.g. C60)

Molecular reorientation
(e.g. pyrazine)

Rotational tunneling
(e.g. CH3I)

Polymers Proteins



Atomic Motions for Longitudinal & Transverse Phonons

Transverse phonon Longitudinal phonon
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Transverse Optic and Acoustic Phonons
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Phonons – the Classical Use for Inelastic Neutron Scattering

• Coherent scattering measures scattering from single phonons

• Note the following features:
– Energy & momentum delta functions => see single phonons (labeled s)
– Different thermal factors for phonon creation (ns+1) &  annihilation (ns)
– Can see phonons in different Brillouin zones (different recip. lattice vectors, G)
– Cross section depends on relative orientation of Q & atomic motions (es)
– Cross section depends on phonon frequency (ωs) and atomic mass (M)
– In general, scattering by multiple 

excitations is either insignificant 
or a small correction (the presence of
other phonons appears in the Debye-
Waller factor, W)
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The Workhorse of Inelastic Scattering Instrumentation at 
Reactors Is the Three-axis Spectrometer

kI
kF

Q

“scattering triangle”



The Accessible Energy and Wavevector
Transfers Are Limited by Conservation Laws

• Neutron cannot lose more than its initial kinetic energy & 
momentum must be conserved 



Triple Axis Spectrometers Have Mapped Phonons 
Dispersion Relations in Many Materials

• Point by point measurement in (Q,E)
space

• Usually keep either kI or kF fixed
• Choose Brillouin zone (I.e. G) to maximize

scattering cross section for phonons
• Scan usually either at constant-Q 

(Brockhouse invention) or constant-E 

Phonon dispersion of 36Ar



What Use Have Phonon Measurements Been?

• Quantifying interatomic potentials in metals, rare gas solids, ionic 
crystals, covalently bonded materials etc

• Quantifying anharmonicity (I.e. phonon-phonon interactions)

• Measuring soft modes at 2nd order structural phase transitions

• Electron-phonon interactions including Kohn anomalies

• Roton dispersion in liquid He

• Relating phonons to other properties such as superconductivity, 
anomalous lattice expansion etc



Examples of Phonon Measurements

Roton dispersion in 4He

Phonons in 36Ar – validation
of LJ potential

Phonons in 110Cd

Kohn anomalies
in 110Cd

Soft mode



Time-of-flight Methods Can Give Complete Dispersion Curves at a 
Single Instrument Setting in Favorable Circumstances

CuGeO3 is a 1-d magnet. With the unique axis parallel to the incident
neutron beam, the complete magnon dispersion can be obtained



Much of the Scientific Impact of Neutron Scattering Has Involved
the Measurement of Inelastic Scattering
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Energy & Wavevector Transfers accessible to Neutron Scattering


