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Spectrometer 
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OBJECTIVES:  The summer school participants will use elastic scattering to measure the ferromagnetic 
order parameter and transition temperature, and inelastic neutron scattering measurements to study the spin 
wave excitations in the perovskite La0.7Sr0.3MnO3.  This system will allow us to demonstrate the versatility and 
power of triple-axis spectrometry in studying the static and dynamic properties of condensed matter systems. 
 
I.  Introduction to the system 
 

The improved modern-day material synthesis 
techniques for oxide materials were developed in part 
in the quest to fabricate high temperature 
superconductors, and has enabled researchers to 
revisit other systems such as the LaMnO3 class of 
materials.  The crystal structure of these materials is 
based on the cubic perovskite system, where the Mn 
ion is surrounded by six oxygen ion with octahedral 
symmetry, with the La ions on a simple cubic lattice 
as shown in Fig. 1.  LaMnO3 is an antiferromagnetic 
insulator (TN=140 K), but the properties can be 
changed by substituting 2+ cations such as Ca, Sr, 
and Ba for La3+.  Doping La1-xAxMnO3 in the range 
0.2<x<0.5 produces an isotropic, metallic 
ferromagnet at low temperature.  The magnetic 
ordering (Curie) temperature is accompanied by a 
metal-insulator transition, with can then be controlled 
by the application of a magnetic field.  The effect on 
the resistivity can be enormous—several orders-of-
magnitude—which would be ideal for device 
applications such as for sensors and for read/write 
heads in magnetic storage media, where information 
is stored in the form of bits which are read by 
magnetic read heads.  These magnetic read/write 
heads work by exhibiting a small change in their 
electrical resistivity as they pass over a magnetic bit.  
This change in the resistivity when the magnetic field 
changes is called magnetoresistance (MR) and 
materials evincing it are called magnetoresistive.  
Most materials have negligible MR, while the 
magnetoresistance is typically only a few percent in 
select metals and semiconductors.  One favorable 
material is Permalloy, an alloy of iron and nickel, and 
this material was used for many years as read/write 
heads in disk media.  The current generation of 

read/write heads in hard drives is based on multilayer 
thin film technology, which amplifies the 
magnetoresistive effect (20 %) and is termed giant 
magnetoresistance (GMR).  The manganites, on the 
other hand, possess colossal magnetoresistance 
(CMR), as compared to the much smaller MR or 
GMR observed previously. 

The basic physics behind this colossal change in 
resistivity is this insulator-to-metal transition, which 
often is first-order in nature and results in electronic 
phase separation (in which two electronic phases are 
spatially distinct) between a ferromagnetic metallic 
and a paramagnetic insulating states.  The particular 
material that we will examine is La0.7Sr0.3MnO3, 
where doped holes induce ferromagnetism and 
metallic conductivity.  Let us first briefly discuss how 
doping the system leads to metallic conductivity [1]. 

 
Fig. 1.  A unit cell of a cubic perovskite ABO3 structure  
The red, blue, and yellow spheres are La, Mn, and O sites, 
respectively. 
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Fig. 2.  (a) Cubic and tetragonal crystal field splitting of 3d 
orbitals in Mn³⁺.  (b) A simple representation of 
ferromagnetic coupling via double exchange. 
 

In a crystal, the wave functions of electrons on 
neighboring atoms mix and their energy levels 
expand into bands of allowed energies.  Because 
electrons follow the Pauli Exclusion principle, they 
cannot occupy the same states simultaneously.  Thus, 
the electrons fill the available states up to an energy 
known as the Fermi energy, EF.  In metals, electrons 
near EF are still free to move because there are 
unoccupied states available in the band.  An insulator 
(like LaMnO3) is the case when all the available 
states are filled with electrons. 

The manganites of interest here have crystal 
structures derived from cubic perovskite lattices (see 
Fig. 1), in which each Mn cation is surrounded by six 
oxygen ions which form an octahedron around it.  
For La3+Mn3+O-2

3, the Mn3+ ion has four d-electrons.  
In this cubic crystal environment, the energy levels of 
the d-electrons split into three degenerate orbitals 
(designated t2g) and two degenerate eg orbitals, as 
shown in Fig. 2(a).  Strong Hund's rule coupling 
(related to the minimization of Coulomb repulsion of 
the electrons on a given atom, while satisfying the 
Pauli exclusion principle) results in the spins of the 
3d electrons needing to be aligned.  As a result, three 
electrons with parallel spins occupy the lowest lying 
t2g orbital, and form a localized magnetic moment 
with S=3/2.  The fourth electron occupies the doubly 
degenerate eg level.  This electron must also have its 
spin aligned with the spins in the t2g orbitals because 
of the same strong Hund’s rule coupling.  There are 
still six d orbitals that are unoccupied—another 3 t2g 
orbitals and two eg orbitals where the spins would be 
in the reverse direction, but these are very high in 
energy (compared to the thermal energies kT of 
interest) because of the Hund’s rule coupling and are 
out of the picture. 

Note that the occupied eg is doubly degenerate, 
which makes Mn³⁺ a Jahn-Teller (JT) active ion.  
That is, the system may be able to lower its energy by 

allowing a distortion of the oxygen environment.  
Such a distortion breaks the degeneracy of the eg 
orbitals, with one orbital becoming lower in energy 
and the other higher than in the degenerate case (Fig. 
2(a)).  Since there is only one electron occupying the 
eg level, it can always lower its energy (at the cost of 
the elastic energy of the distortion).  Therefore all 
these Mn3+ oxides exhibit small distortions away 
from the ideal cubic structure, but are still insulating. 

As we replace La³⁺ cations with Sr²⁺ cations, we 
change the Mn³⁺ ions into Mn⁴⁺ ions, where the eg 
orbital is unoccupied.  This allows the eg electrons the 
possibility to hop to an adjacent unoccupied site.  As 
the carrier concentration is varied, the system's 
physical properties change as shown in Fig. 3 [2].  
The ferromagnetic order and metallic conductivity 
first show up at x0.1 and at x0.15, respectively.  
When the Sr concentration reaches x0.3, the 
ferromagnetic transition temperature, TC, becomes 
maximum and the system is a good metal. 

Now, we've suggested how the system becomes 
metallic with doping, but the question remains, why 
does it become ferromagnetic (that is, why do the 
spins on different Mn sites spontaneously align in the 
same direction?).  While there are various causes of 
magnetism in materials, the dominant factor for the 
manganites is known as double exchange.  Here, 
there is a “virtual process” in which the eg electrons 
are allowed to hop from site to site through an 
oxygen orbital.  If you imagine that the eg electron is 
hoping from an occupied Mn³⁺ site to an unoccupied  
 

 
 

Fig. 3.  (a) Resistivity of La1-xSrxMnO3 as a function of 
temperature.  The arrows indicate critical temperatures for 
magnetic transitions.  (b) The phase diagram of the La1-

xSrxMnO3 system.  The abbreviations F, P, CN, M, and I 
stand for ferromagnetic, paramagnetic, spin-canted 
antiferromagnetic, metallic and insulating, respectively [2]. 



  3

Mn⁴⁺ site, and back again, the probability of hoping 
will depend on the relative orientation of spins on the 
two sites (see Fig. 2(b)).  In fact, because of the 
strong Hund's rule coupling, as the spin moves from 
the Mn³⁺ site to the Mn⁴⁺ site, it must be aligned with 
the t2g “core” spins on both sites.  Therefore 
ferromagnetism evolves from the system by 
maximizing the probability of hopping.  This is the 
physical basis behind the double-exchange model for 
the manganites. 

 
II.  THE BT-7 TRIPLE-AXIS SPECTROMETER 

 
The basics of neutron scattering and the 

flexibility of triple-axis spectrometer is covered in a 
separate experiment handout, so here we only give a 
brief overview of the BT-7 triple-axis spectrometer 
[3].  The instrument (Fig. 4) has the choice of either a 
copper [Cu(220)] or pyrolytic graphite [PG(002)] 
doubly-focusing monochromator, providing a 
continuous incident neutron energy range from 5 to 
500 meV.  The 400 cm² reflecting area for each 
monochromator yields as much as an order-of-
magnitude gain of neutrons onto the sample over 
earlier instruments, with available fluxes well into the 
10⁸ n/cm²/s range.  Generally speaking, neutron scat- 

 

 
 

Fig. 4 The BT-7 triple-axis spectrometer with the polarized 
beam system installed. 

tering is a flux-limited technique, and every 
experimenter wants higher count rates and better 
resolution.  Unfortunately these are contradictory 
requirements, and the experimenter must carefully 
balance these to successfully measure the quantity of 
interest with sufficient resolution in the beam time 
available.  It is therefore highly desirable to have a 
wide range of choices of instrumental parameters in 
order to optimize the resolution and intensity of the 
instrument. 

The sample stage of the instrument includes two 
coaxial rotary tables, one for sample rotation and one 
for the independent rotation of magnetic field coils, 
and a computer controlled sample goniometer and 
elevator.  Polarized He3 cells are available to provide 
neutron polarization capability with either 
monochromator and the standard PG analyzer 
system. 

The BT-7 spectrometer is designed to be used 
with interchangeable customized analyzer/detection 
systems (Fig. 4).  The analyzer system currently 
available has various detectors and related 
collimators housed in a shield that is supported on air 
pads, as shown in Fig. 5.  The analyzer system has a 
multi-strip PG(002) analyzer array that can be used in 
a horizontally focused mode, or in a flat 
configuration either with a linear position-sensitive 
detector (PSD) or with conventional Söller 
collimators.  All options can be selected and 
interchanged through the instrument control program 
(ICE) without any mechanical changes or user 
intervention.  A separate diffraction detector is 
provided in front of the analyzer for Bragg peak  
 

 
Fig. 5.  Schematic of the BT-7 detector/analyzer system. 

Question:  (1) Based on the picture described in Fig.3, 
explain how magnetic field reduces the resistivity in CMR 
materials.  (2) In Fig. 3(b), what would you suggest is the 
hole doping concentration that is potentially useful for a 
CMR read/write head application, and why? 
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measurements, and a series of 11 detectors imbedded 
in the shielding behind the analyzer continuously 
monitor the neutron flux entering the analyzer 
system.  These detectors can also be used for 
measurements of the instantaneous correlation 
function, for example, or with a radial collimator to 
determine a diffraction pattern over a limited angular 
range.  The PSD can also be used with a radial 
collimator to determine the diffraction pattern or 
instantaneous correlation function, with higher 
resolution. 
 
General Specifications for BT-7:   
 
 PG filter in reactor beam, remotely insertable 

and tunable. 
 Double focusing PG(002) (d=3.35416 Å) or 

Cu(220) (d=1.273 Å) monochromator crystals 
 Flat PG or horizontally focused PG (13 blades, 2 

cm wide each) 
 Built-in guide fields, and insertable spin rotators, 

He3 polarizers 
 Monochromator take-off angles 2 from 16 to 

75 degrees 
 Variable incident energy from 5.0 to 500 meV 
 Scattering angles from 0 to 120 degrees 
 Söller slit collimation of 10, 25, 50, 80and 

open at most positions. 
 Radial collimators are available before and after 

the analyzer. 
 Computer controlled vertical or horizontal guide 

field at sample position. 

 
III.  EXPERIMENT AND ANALYSIS 

 
Simple ferromagnetic spin-waves 
 
Perhaps one of the simplest microscopic models 

of magnetism starts from the Heisenberg 
Hamiltonian.  It is generally applicable to systems in 
which the spins are localized on atomic sites, and 
where the spin interactions are mediated by direct 
overlap of their atomic wave-functions, or through 
intermediaries such as oxygen (superexchange) or 

through conduction electrons (indirect, or Ruderman-
Kittel-Kosuya-Yosida (RKKY) exchange).  The 
resulting magnetism originates from a combination of 
the Coulomb repulsion and the Pauli exclusion 
principle.  In this model, the interaction energy 
between two neighboring spins is simply  

 

21 SS  JE      (1) 
 
where J is the exchange constant representing the 
strength of magnetic exchange, and Si is a vector 
operator of the ith spin.  If J is positive, then a lower 
energy occurs when the moments are parallel, while 
if J is negative then the spins will align antiparallel to 
lower their energies.  To get the total energy of the 
system we simply sum over all the spins in the 
system: 

SS ji
ji

jiJH  
,

,2

1
  (2) 

where the sum is over all spins in the system.  
Typically the exchange for nearest-neighbors spins 
dominates the energetics and the ground state is 
either a ferromagnet (all spins parallel) or an 
antiferromagnetic (nearest neighbor spins 
antiparallel).  More complicated spin arrangements 
(See Fig. 6(a)) certainly can and do occur in many 
systems.  Typically the exchange energies are taken 
as fitting parameters to be determined 
experimentally, and due to its simplicity this model is 
often used as a starting point to fit data regardless of 
the underlying physics of the magnetism.  

 

 
But given the ground state of the system, how do 

we make a magnetic excitation?  One of the simplest 
excitations we could imagine is to simply flip the 
direction of one of the spins.  However, the energy 
cost of this would be very large (12J for a cubic 
lattice), in fact, this is the highest energy excitation 
you can make.  A much lower energy excitation can 
be achieved if this single spin reversal is shared 
among many spins.  Classically, if we allow the spins 
to precess about their axes, then a spin-wave can be 
thought of as a constant phase difference between the 
precession rates of neighboring spins (see Fig. 6(b)). 

Question:  (1) What are the advantages of using a 
position-sensitive detector? (2) What is the best 
instrumental configuration if the spin-wave 
excitations above 40 meV were to be measured on 
BT-7? 

Question:  where did the factor of ½ come from in 
Eq. (2)? 
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Fig. 6(a) Examples of simple magnetic ordering patterns.  
(b) Classical representation (side and top views) of spin 
wave excitation in a one-dimensional ferromagnet. 
 

The measured spin wave dispersion relation at 
low temperatures for La0.85Sr0.15MnO3 [4], which is 
similar to the sample we are going to study [5], is 
shown in Fig. 7.  We can see that the energy of the 
spin waves at small reduced wave vector q (long spin 
wave wavelength) is very small, while at the zone 
boundary, the excitation energy rises to a relatively 
high energy of 55 meV (short wavelength excitations 
mean that the excitation is shared by fewer spins and 
that neighboring spins are out of phase to a much 
greater extent, thus requiring more energy to excite).  
Assuming nearest-neighbor exchange only, the 
solution to the spin wave excitation energies for our 
simple Hamiltonian gives the following spin wave 
dispersion relation: 






 2sin8 2 qaSJESW   (3) 

where a is the lattice parameter (nearest-neighbor 
distance).  Because of time restrictions, we will be 
focusing on the small-q spin wave excitations in this 
experiment, where we may expand the sine function 
in the dispersion relation to obtain the approximate 
expression  

222 qJSaESW    . (4) 

Note that we have 0E  as 0q , which is the 
definition of an isotropic ferromagnet;  with 

2q , q=0 corresponds to infinite wavelength, 
i.e. a uniform rotation of the entire spin system, 
which for an isotropic system costs no energy by 

definition.  More generally, we should also include 
the possibility of magnetic anisotropy in the system, 
because in real spin systems the moments prefer to 
point along one particular crystallographic direction.  
This is represented by the gap parameter, .  This 
particular direction is called the magnetic easy axis, 
and represents the energy required to rotate the spins 
away from this easy direction.  Then for a completely 
isotropic system, 0.  A "soft" ferromagnet is one 
where  is small, which judging from Fig. 7 is the 
case for the present system.  For a “hard” or 
“permanent” magnet, such as on your refrigerator, 
this costs a lot of energy, and  will be large. 

 

 

 
 

Fig. 7.  Measured spin wave dispersion relations in 
La0.85Sr0.15MnO3.  The wave vectors are based on the 
orthorhombic representation [4]. 

 
 
Temperature Dependent Properties 
 
For a ferromagnet, the ordered magnetic moment 

on each atomic site (or equivalently, the bulk 
magnetization) is a maximum at low T, in the ground 
state, while it vanishes (by definition) at the ordering 
temperature, TC.  How do we get from the state with 
maximum magnetization to one where it vanishes?  
By thermally exciting spin waves—each spin wave 
we create lowers the magnetization by 1 B.  As we 
approach the ordering temperature, the magnetization 
is expected to follow a power law: 

Question:  What kind of magnet is your 
refrigerator, hard, soft, or non-magnetic?
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where the critical exponent 0.3 for this type of 
magnet. 

 
The magnetization, or sublattice magnetization 

for an antiferromagnet, can be directly determined in 
a neutron measurement.  The integrated intensity for 
a magnetic Bragg reflection is given (for a simple 
collinear magnetic structure) by [6]  

   2
2^^

224 11054.0 MB FMcmCAI 





     

(6) 

where the neutron-electron coupling constant is 

0.5410-24cm2, 
^

 and 
^

M  are unit vectors in the 
direction of the reciprocal lattice vector  and the spin 
direction, M, respectively, and the orientation factor 
<…> must be evaluated for all possible domains.  C 
is an instrumental constant which includes the 
resolution of the measurement, and A() is an angular 
factor which depends on the method of measurement.  
The magnetic structure factor F, is given by  

  jj iW
j

j

z

jM eefF rττ      (7) 

where <…> is the thermal average of the aligned 
magnetic moment of the magnetic ion at the jth site at 
position rj, Wj is the Debye Waller factor for the jth 
atom, f() is the magnetic form factor (Fourier 
transform of the magnetization density), and the sum 
extends over all magnetic atoms in the unit cell.  We 
see from these expressions that neutrons are sensitive 
to the location of magnetic atoms and the spatial 
distribution of their magnetic electrons;  the 
temperature, field,... dependence of the thermal 
average of the ordered moment, which is directly 
related to the order parameter for the magnetic phase.  
An example of the magnetic scattering is given in 
Fig. 8 [7].  Note that the magnetic intensity is 
proportional to the square of the ordered moment. 

We should also expect the spin wave spectrum to 
change with temperature.  Mean field theory simply 

 
 
Fig. 8.  Temperature dependence of the integrated intensity 
of the ferromagnetic (1 0 0) peak for La0.8Ca0.2MnO3 [7]. 

 
 

replaces S with the thermal average value, which 
(within a constant) is the magnetization.  From Eq. 
(3) we can then expect the spin waves to lower their 
energies, or renormalize, with T.  Generally, we can 
write the spin wave dispersion relation in the small q 
regime as a Taylor series in q: 

...)()()( 42  qTEqTDTEspinwaves (8) 

where D is the spin-wave “stiffness” parameter, and 
the rest of the terms are higher order terms in a 
Taylor expansion.  The quantitative value of the 
stiffness parameter D depends on the details of the 
interactions and the nature of the magnetism, such as 
whether the magnetic electrons are localized or 
itinerant, or the structure is amorphous or crystalline, 
but the general from of the spin wave dispersion 
relation is the same for all isotropic ferromagnets.  As 
T→TC, D(T) follows M(T) in mean field theory, 
while more generally in the critical regime just below 
magnetic ordering temperature TC, D(T) should 
follow a power law given by  

 








 


C

C

T

TT
TD )(   (9) 

where ′ (2/3) is the critical exponent for the 
correlation length below TC.  Fig. 9 shows examples 
of spin waves measurements, and Fig. 10 shows the 
renormalization of the spin waves energies with 
temperature. 

Question:  What do you mean, “this type of 

magnet”?  What controls the value of ? 
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Fig. 9.  Constant-Q scans revealing spin wave excitations 
for La0.7Sr0.3MnO3 (a) at T = 300 K, for several wave 
vectors, and (b) Q = (0 0 0.965), for several temperatures 
[5]. 

 
At elevated temperatures, there will also be many 

spin waves in the system, and collisions between the 
spin waves will result in decays of normal modes and 
consequently finite intrinsic lifetimes for the spin 
waves.  The intrinsic linewidths of the spin wave 
excitations in the long wavelength regime are 
expected to follow: 

2

4 ln),( 



















SWE

kT
TqTq  . (10) 

Fig. 11 shows an example of spin wave linewidth 
measurements.  Finally, we can determine the 
number of spin waves that are thermally populated at 
each energy, which is directly related to the observed 
intensity of the spin waves in an inelastic neutron 
scattering experiment.  These are boson excitations 
(bosons are particles in which there are no 
restrictions on the number of particles existing in the 
same state), and should obey the Bose-Einstein 
population factor: 

1

1
)(

/ 


kTESW SWe
En  . (11) 

A neutron can annihilate a spin wave excitation in the 
sample and gain energy; the probability for this 
process to occur is directly proportional to the 
number of spin waves n(E) at the spin wave energy 
ESW.  A neutron can also create a spin wave in the 
system, while losing energy.  The probability for this 
process is proportional to 1+n(E), where the 1 comes 

 
 
Fig. 10.  (a) Low energy spin wave dispersion measured at 
two different temperatures and (b) the temperature 
dependence of the spin wave stiffness constant of 
La0.85Sr0.15MnO3 [4]. 
 
from the fact that it is always possible to create a spin 
wave excitation, even at T = 0.  This is something 
that we should also be able to extract from the 
experimental data. 

 
Experimental Planning and Setup 
 
When planning neutron scattering experiments, it 

is important to have as much understanding as 
possible of the basic properties of the material.  For 
instance, understanding of the crystallographic 
information, such as lattice parameters, is imperative.  
In the case of single crystal samples, it is also 
important to have some idea about the direction of 
principal crystal axes.  For an effective investigation,  
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Fig. 11.  Intrinsic spin wave linewidths.  (a) At low 
temperatures there should be no intrinsic linewidth in the 
localized model, while the very large linewidths indicate 
magnon—electron damping in this metallic system.  (b) At 
small wave vectors the linewidths follow the expected 
theoretical form (Eq. 10), but at larger wave vectors there 
are intrinsic linewidths that don’t have a thermal origin [4]. 

 
measurements of bulk properties such as the 
magnetic susceptibility, heat capacity and resistivity, 
can serve as an invaluable guide.  All NCNR facility 
users should avail themselves of any existing data, be 
it their own, or published elsewhere, that could help 
them make more efficient use of their beam time.   

Crystallographically, La0.7Sr0.3MnO3 belongs to a 

space group cR3  with the lattice parameters 
a=b=5.5084Å, c=13.3717Å, ==90°, and  =120°.  
This hexagonal geometry is equivalent to a 
rhombohedral one with a=b=c=3.8835 Å and 
===90.344°.  Since this is close to cubic 

symmetry, for convenience we will carry out the 
measurements based on the cubic notation. 

Fig. 3(b) shows the ferromagnetic transition 
temperatures, TC, of La1-xSrxMnO3 as a function of x.  
La0.7Sr0.3MnO3 has TC  350 K [5].  Therefore, we 
need sample environment equipment that can control 
higher than room temperature in order to study the 
ferromagnetic transition. 

 

 
The primary goal of this experiment is to 

measure the spin excitation spectrum in the 
ferromagnetically ordered phase and understand its 
temperature-dependent behavior.  A 4 gram single 
crystal sample of La0.7Sr0.3MnO3 has been sealed 
inside an aluminum container.  Aluminum is among 
the most commonly used materials for sample 
containers because it is relatively transparent to 
neutrons, easy to machine, and is a good thermal 
conductor.  The container has been mounted inside a 
He closed-cycle refrigerator/furnace that can be 
controlled between 30 - 600 K, and placed on top of 
the goniometer (or sample) table.  The measurement 
will be done in the temperature range between 30 and 
400 K. 

Our measurements will proceed as following.  
(Some data sets may be taken in advance and 
distributed.) (1) First, we will measure the integrated 
intensity of (1 0 0) Bragg peak as a function of 
temperature in the range 250-400 K.  To properly 
obtain integrated intensities, one needs to perform 
both transverse () and longitudinal (:2) scans.  
From this, we will be able to extract TC of the 
sample.  (2) Second, we will measure the spin wave 
spectrum up to E  10 meV by scanning the incident 
energy at several Q points.  From the measured data 
we can obtain the spin wave dispersion, which can be 
fit to extract the spin wave stiffness parameter, D(T).  
The spin wave data may be taken at a few selected 
temperatures, and the collection of data can be used 
to show how D changes as a function of temperature.   

Question:  (1) La0.7Sr0.3MnO3 orders 
ferromagnetically below TC = 350 K.  (1) Where in 
reciprocal space do we expect to find the magnetic 
Bragg peaks?  (2) Where will the low energy spin 
wave excitations be located?  (3) How will the spin 
dynamics differ between above and below TC? 



  9

 
 

Intensity of the quasielastic peak for La0.85Sr0.15MnO3 at (0 
0 1.15) as a function of temperature [4]. 
 
 
(3) Third, we will measure the quasielastic intensity 
at a certain Q close to (1 0 0) over a temperature 
range going through TC, such as is shown in Fig. 12.  
The measurement will also be done by scanning the 
incident energy.  By analyzing the integrated 
intensities and the linewidths of the quasielastic 
peaks as a function of temperature, we will be able to 
gain insights into the spin dynamics in the vicinity of 
the transition. 

 

 
Data and Analysis 
 
Fig. 8 shows the temperature dependence of the 

integrated intensity of (1 0 0) Bragg peak observed 
from La0.8Ca0.2MnO3 [7].  There is an intensity 
increase observed below TC = 181 K, which follows a 
power law behavior.  This intensity increase comes 
from ferromagnetic order on Mn sites.  The sample 
we are going to study, La0.7Sr0.3MnO3, will show TC 
at a different temperature, but the data should look 
similar.  Knowing that spin waves are fluctuations of 

ordered spins around the average moment, one 
should expect to observe the low energy spin 
excitation spectrum in the vicinity of this reflection.  
The (1 0 0) position is particularly advantageous, 
since it is the smallest wave vector where 
ferromagnetic intensity is observed.  This is because 
the magnetic scattering intensity generally decreases 
at higher momentum transfer due to spatial 
distribution of unpaired electron density, as indicated 
in Eq. (7). 

 

 
The energy scan data we are going to obtain will 

be similar to what is shown in Fig. 9.  Constant-Q 
scans typically show as many as three peaks:  a 
central (quasi)elastic peak and an inelastic spin wave 
peak on each side of positive (neutron energy loss—
spin wave creation) and negative (neutron energy 
gain—spin wave annihilation) energy transfer.  Fig. 
9(a) shows that the spin wave energy increases as we 
move away from the ferromagnetic (0 0 1) peak.  The 
temperature dependence of D is demonstrated by the 
data shown in Fig. 9(b).  Although the lineshape of 
triple-axis data is a complex function of various 
parameters, one can approximately extract the energy 
values by fitting with Gaussian (if the intrinsic 
linewidth is small) or Lorentzian (if the intrinsic spin 
wave linewidth is large) functions.  A series of 
energy values obtained at various momentum 
transfers can be used to obtain the dispersion relation.  
The dispersion relation in an isotropic ferromagnet 
can be conveniently expressed by Eqs. (3,4), where 
the temperature dependent spin stiffness constant is 
denoted as D(T).  Fig. 10(a) shows results obtained 
from La0.85Sr0.15MnO3 at two different temperatures, 
and the obtained D(T) is plotted in Fig. 10(b).  The 
quantitative values of the stiffness constant D depend 
on the details of the interactions and the nature of the 
magnetism, but the general form of the spin wave 
dispersion relation is the same for all Heisenberg 
ferromagnets. 

Finally, the integrated intensities of the 
quasielastic central peaks are obtained and the result 
will be similar to what is shown in Fig. 12.  These 
data were obtained slightly away from the 
ferromagnetic zone center (q=0), since otherwise the 
counts will be swamped by the intense nuclear and  

Question:  (1) A  scan may show multiple peaks 
instead of a single Gaussian. 
What could be the reason if it does?  (2) Although 

it is not the case for the (1 0 0) peak in 

La0.7Sr0.3MnO3, what would it mean if a :2 
scan shows multiple peaks? 

Question:  Why does the ferromagnetic peak 
position coincide with the nuclear peak, say, at (1 
0 0)? How about antiferromagnets? 
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Fig. 13.  An energy scan through the spin wave excitations 
in La0.7Sr0.3MnO3 using polarized neutron incident on the 
sample, and analyzing the polarization state of the 
scattered neutrons.  Spin wave scattering can reverse, or 
“flip” the neutron spin, while spin diffusion may not.  The 
data here were taken for both spin-flip and non-spin-flip 
channels, and the difference in intensities shows that the 
inelastic signal is due to the expected spin wave scattering, 
while the quasielastic peaks in the non-spin-flip scattering 
is due to spin diffusion, while the elastic (resolution-
limited) peak is from magnetic clusters (polarons [8-11]) 
and nuclear scattering.   
 
 
magnetic Bragg scattering.  In the paramagnetic 
phase the central peak slowly gains intensity as we 
lower the temperature and approach TC, and quickly  
drops in intensity below TC.  The intensity above TC 
comes from paramagnetic spin fluctuations, while 
that below TC it is mostly from spin waves, which 
quickly move to higher energies and out of the range 
of these quasielastic measurements.  The intrinsic 
linewidths (Fig. 11), if available, provide a 
determination of the lifetimes of the magnetic 
excitations. 

 

Polarized Neutron Scattering 
 
Finally, we remark about the use of polarized 

neutrons.  We have previously learned that neutrons 
interact either with nuclei or with unpaired electrons.   

While it is useful to have more than one type of 
neutron-sample interaction, it can also be a source of 
confusion.  Therefore, it becomes an important issue 
how to discriminate magnetic scattering from nuclear 
scattering.  There are several experimental clues to 
identify the origin of the scattering.  Magnetic 
scattering follows a magnetic form factor [Eq. (7)], 
so the intensity decreases with increasing Q, while 
phonon scattering generally increases as Q2.  The 
temperature dependence also can identify whether the 
scattering is spin wave (qualitatively changing 
character above the ordering temperature) or phonon.  
If these trends are not definitive, however, then the 
most powerful and unambiguous method of neutron 
polarization analysis can be employed.  This takes 
advantage of the fact that a neutron can reverse its 
spin direction when the origin of the scattering is 
magnetic (magnetic Bragg peaks, spin waves, critical 
scattering, etc.), while the scattering is always non-
spin-flip for coherent nuclear scattering (structural 
Bragg peaks, phonons, etc).  Since the neutron 
polarization analysis involves many experimental 
complexities and requires multiple measurements that 
are time consuming, we will not perform this during 
the summer school.  Nevertheless, the data shown in 
Fig. 13, which were previously taken with this 
technique, powerfully confirm that the scattering we 
observe in La0.7Sr0.3MnO3 is truly magnetic in nature.  
The present manganite class of materials continues to 
be under active investigation [12]. 
 
IV.  Summary 

 
Neutron scattering can be used to make a 

complete determination of the magnetic properties of 
a system.  In order of the complexity of the 
measurement that needs to be carried out, the 
magnetic order parameter is typically the easiest 
quantity to measure, since the scattering is strong and 
localized at a point in reciprocal space.  The magnetic 
structure and spin direction(s) can be determined by 
measuring a series of magnetic Bragg peaks, and the 
magnetic form factor—Fourier transform of the 
magnetization density—can be determined with more 
effort.  Inelastic scattering, on the other hand, is 
spread throughout the (three dimensional) Brillouin 
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zone, and is thus much weaker in any particular 
measurement and requires larger samples and 
considerably more effort.  However, it leads to the 
determination of the fundamental exchange 
interactions of the systems.  Further effort still is 
needed to determine spin wave linewidths, critical 
scattering and exponents, and the general nature of 
paramagnetic fluctuations.  But neutron scattering has 
the capability of making a complete determination of 
the nature and origin of the magnetism of any class of 
materials.  The present workshop has focused on this 
magnetic system, but neutron scattering can be 
employed equally well in the investigation of crystal 
structures and lattice dynamics.  
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