Uses of USANS

NCNR Summer School, June 2012

USANS in a slide

- Q range: $\sim 3 \times 10^{-5} \AA^{-1}$ to $\sim 3 \times 10^{-3} \AA^{-1}$
- Size range: ~ 0.5 to $\sim 10 \mathrm{um}$
- Slit geometry
- Same sample environments as SANS

$$
\frac{d \Sigma_{s}}{d \Omega}(q)=\frac{1}{\Delta q_{v}} \int_{0}^{\Delta q_{v}} \frac{d \Sigma}{d \Omega}\left(\sqrt{q^{2}+u^{2}}\right) d u
$$

Effects of High Pressure on Casein Micelle Structure

Casein Micelles

k-casein
$\alpha_{\mathrm{s} 1^{-}}, \alpha_{\mathrm{s} 2^{-}}, \beta-, k-$ casein

Calcium phosphate nano-cluster

Holt, Yearbook Hannah Research, (1994)

Effects of Pressure

Micelle begins disintegration

Irreversible micelle breakdown

SAXS

> Pressure not affecting SAXS lengthscale
> Calcium phosphate clusters not broken down

In-Situ Pressure Measurements

Changes with Pressure

Stability and Reversibility

Skim Milk at Multiple Contrasts

Model of Casein Micelle

Colloidal Calcium Phosphate

Free "sub-micelles"

Summary

Neutrons enable in-situ measurement of structure under pressure

Multiple contrasts and co-refinement reduce the number of free parameters in modelling complex systems

Casein micelles appear to break down into subunits consistent with protein decorated calcium phosphate clusters when subjected to high pressures.

High Internal Phase Emulsions and Sphere Packing

High Internal Phase Emulsions

On-site manufactured.
Pumped ANFO for mining applications

Fortis

Advantage

Water-in-oil type emulsion with internal phase volume fraction > 90\%

Deformation
Polydispersity

High Internal Phase Emulsions

On-site manufactured.
Pumped ANFO for mining applications

Fortis

Advantage

Water-in-oil type emulsion with internal phase volume fraction > 90\%

Polydispersity

Microscopy

Cryo-EM

- Direct imaging of emulsion
- Freeze-fracture process may damage structure

Confocal Fluorescence

- Direct imaging of "unperturbed" emulsion
- Depth scanning for volume reconstruction
- Local probe only
- Theoretical treatment needs statistical sample
- Edge effects probably important in thin samples
- Present up to 10 particle diameters from surface
- Surface induced crystallization

Emulsions

Mesoscale Structure of High Internal Phase Emulsion
Nanoscale Structure of High Internal Phase Emulsion

Emulsions

Oil phase SLD from Invariant

S/V from Porod

- Polydispersity varies with aqueous volume fraction
- At highest values, we cannot generate ever smaller minimum sizes (<0.5 micron), so maximum size increases to achieve required polydispersity thus decreasing surface areas
- At ϕ of about 0.7 spheres lose contact and creaming results due to lack of long range forces (cf. Emulsion dilution in hexadecane)

Our Tasks

Construct model systems of mixed spheres on relevant length scales

Determine packing density

Determine pair correlations

Goal

To correlate polydispersity with packing arrangement and density and then with physical properties of the system.

The Ancient Quest

Johannes Kepler |57I-I630

Carl Freidrich Gauss 1777-1855

FCC is densest lattice

Thomas C. Hales

1998
Proof of Kepler Conjecture

Apollonius of Perga ca. 262-190 BC

The Ancient Quest

Johannes Kepler I57I-I630

Carl Freidrich Gauss 1777-1855

FCC is densest lattice

Thomas C. Hales

1998
Proof of Kepler Conjecture

Apollonius of Perga ca. 262-190 BC

The Ancient Quest

Johannes Kepler I57I-I630

Carl Freidrich Gauss 1777-1855

FCC is densest lattice

Thomas C. Hales

1998
Proof of Kepler Conjecture

The Ancient Quest

Apollonius of P ca. 262-190

Random / Loose Packing?

Polydispersity?

1998
of of Kepler -onjecture

McGeary, R. K. (1961)
J. Amer. Ceramic Soc. 44, 513.

Previous Studies

Mixtures of metal balls

- Sizes must be different enough
- Too-large a difference leads to phase separation
- Max. packing fraction at $20-30 \%$ small spheres
- Sphere correlations not known

Maximum Packing Density $=$ Minimum Viscosity

Materials

Emulsions - PIBSA:hexadecane:saturated Ammonium Nitrate
Glass spheres - polydisperse ' 3 - 10 ’ micron range
PMMA spheres- monodisperse 'I.5' and 'I0’ microns
Silica spheres - monodisperse 'I' and ‘5' micron diameter

Why PMMA/Silica/Glass?

- Chemically inert
- Useful scattering length density
- Available in suitable sizes

Polydisperse Glass Spheres

Obvious polydispersity (as expected)
Two "knees" in the data give lower and upper size bounds of $2 \mu \mathrm{~m}$ and $20 \mu \mathrm{~m}$. Compare with nominal $3-10 \mu \mathrm{~m}$

Porod/Invariant suggest incomplete wetting

Unmixed PMMA Spheres

Porod/Invariant $\phi=0.45$

Gravimetric $\phi=0.33$

Porod/Invariant

$$
\phi=0.61
$$

Gravimetric $\phi=0.53$

Loose packing at I. $5 \mu \mathrm{~m}$ - electrostatic forces more important than gravity.
Use Percus-Yevick Fluid model with Schulz size distribution
Two corrections
A Debye-Buche term for voids - packing not exactly like a fluid Allow structure factor to have different polydispersity from form factor

Mixed PMMA Spheres

$$
\mathrm{I}(\mathrm{Q})=\mathrm{I}_{\mathrm{SS}}+\mathrm{I}_{\mathrm{LL}}+\mathrm{I}_{\mathrm{SL}}+\mathrm{I}_{\mathrm{DB}}
$$

I_{SS} and ILL are calculated as for unmixed spheres
$I_{D B}$ accounts for voids in the packing
l_{12} is calculated using Ashcroft-Langreth $\mathrm{S}(\mathrm{Q})$ for bimodal spheres

Two "empirical" factors:

- Allow Small-Large interactions to vary independently of Small-Small and Large-Large
- Take account of size segregation

Mixed phases are partially self-segregated
 S_{12} is less than for perfectly mixed spheres

Mixed PMMA Spheres

Linear relationship

No peak in packing fraction

Conclusions

- PMMA systems display low total packing fractions indicating that non-gravitational forces are indeed important at this length scale.
- Around 50% of a mixed size PMMA sample is demixed
- The mixed volumes are not a random distribution of small and large spheres - the large spheres tend to self avoid and are coated with small particles
- USANS can provide rich data on mixed powders on the micron length scale which contains non-trivial information

Monodisperse Silica

- Loaded into quartz cuvettes
- Tamped by tapping on desk
- Measure mass of silica to estimate packing density
- Wetted with H2O/D2O mixture to reduce scattering contrast

Fitting and Porod/
Invariant give contrast that is too large.

Guinier region not present.

Turnover at too low Q
Incomplete Wetting

Monodisperse Silica

Repeat method as before but:

- Put sample under vaccum to remove air
- Load water into cell whilst sample is under vacuum

Guinier region now present.

Silica contrast matched sample shows residual
scattering from remaining air bubbles.

Much better wetting

 Air bubbles not causing a significan
Monodisperse Silica

Initial fits to wetted silica data using model

Soft Spheres

Poly-NIPAM

Thermo-responsive "Easy" to synthesize

- Core-Shell (polystyrene core)

Ongoing Work

- Continuing analysis of wetted silica data
- Contrast matching studies to extract partial structure factors directly:
- Silica/PMMA mixtures (experiment next week)
- Make deuterated PMMA.
- Computer simulations of packing to compare with our model and data will hopefully provide basis for "empirical" factors or a replacement.
- Ternary/Quaternary/... mixtures
- Viscosity
- Would like to understand viscosity - polydispersity relationship

Ongoing Work

Started with emulsions but ...

Important theoretical problem with applications beyond emulsions
"What distribution of sizes do I need to get this volume fraction or that physical property"

> Foams Powder Processing Composite Filler Aggregation Pumped Slurries Geology and Carbon Capture

NCNR USANS Highlights

SWNT/Epoxy

T. Chatterjee and R. Krishnamoorti, U. Houston, and A. Jackson

Floc size is invariant under different concentration conditions. This suggests that it is floc-floc interactions that are determining elastic network strength.
T. Chatterjee, R. Krishnamoorti, Phys. Rev. E., 75 (5), 050403, 2008
T. Chatterjee, A. Jackson, R. Krishnamoorti, J. Am. Chem. Soc, I 30 (22), 6934, 2008

Fibrinogen Clots

D. Pozzo, U.Washington, L. Porcar, ILL/NCNR and P. Butler, NCNR

Combined SANS/USANS provides structural information over 4 orders of magnitude.

Neutrons allow us to study the system under shear and under biologically relevant conditions

Cement

A. Allen, NIST Ceramics Division and J.Thomas and H. Jennings, Northwestern University

Allen AJ, Thomas JJ, Jennings HM. Nature Materials, 6(4), 3 I I (2007)

Acknowledgements

- JohnWhite (ANU) (Emulsions/Spheres)
- Philip Reynolds (ANU) (Emulsions/Spheres)
- Duncan McGillivray (ANU, now U.Auckland) (Emulsions/ Spheres/Milk)
- Mark Henderson (ANU) (Emulsions)
- Johann Zank (ANU, now Orica) (Emulsions)
- Mara Levine (Hood College) (Soft Spheres)
- Access to Major Research Facilities Program (AMRFP) fund (Australian Government)
- NIST Center for Neutron Research
- NSF - Center for High Resolution Neutron Scattering
- Orica

Questions?

andrew.jackson@esss.se

Unmixed

$$
\begin{gathered}
I_{S S}(Q)=\phi_{S} \ll V_{S} \gg<P_{S}(Q) \gg S_{S S}^{M}(Q) \\
S_{D B}(Q)=\frac{A_{0}}{\left(1+Q^{2} \zeta^{2}\right)^{2}} \\
I_{S S}(Q)=\phi_{S} \ll V_{S} \gg<P_{S}(Q)>\left(S_{S S}^{M}(Q)+S_{D B}(Q)\right)
\end{gathered}
$$

Mixed

$$
\begin{gathered}
I\left(Q, \phi_{L}, \phi_{S}\right)=I_{S S}\left(Q, \phi_{L}, \phi_{S}\right)+2 I_{S L}\left(Q, \phi_{L}, \phi_{S}\right)+I_{L L}\left(Q, \phi_{L}, \phi_{S}\right)+I_{D B}\left(Q, \phi_{L}, \phi_{S}\right) \\
I_{D B}\left(Q, \phi_{L}, \phi_{S}\right)=\frac{\phi_{S}<P_{S}(Q)>+\phi_{L}<P_{L}(Q)>}{\left(\phi_{S}+\phi_{L}\right)} \frac{A_{0}}{\left(1+Q^{2} \zeta^{2}\right)^{2}} \\
I_{S S}\left(Q, \phi_{L}, \phi_{S}\right)=\phi_{S} \ll V_{S} \gg P_{S}(Q)>S_{S S}^{M}(Q)
\end{gathered}
$$

$$
I_{S L}\left(Q, \phi_{L}, \phi_{S}\right)=M \times\left(\phi_{S} \ll V_{S} \gg<P_{S}(Q)>\phi_{L} \ll V_{L} \gg<P_{L}(Q)>\right)^{1 / 2}<S_{S L}(Q)>
$$

$$
I=F \times I(\text { mixed })+(1-F) \times I(\text { unmixed })
$$

USANS - What and Why?

USANS - What and Why?

USANS - What and Why?

$$
Q=3 \times 10^{-5} \AA^{-1}, \lambda=6 \AA
$$

USANS - What and Why?

$Q=3 \times 10^{-5} \AA^{-1}, \lambda=6 \AA$

Instrument Details

Differences from SANS

Slit vs Pinhole Geometry

Differences from SANS 0D vs 2D detector

SANS

- 2D detector
- Collect wide Q range simultaneously
- Non-azimuthally symmetric data easily analyzed
- OD detector
- Point-by-point data collection
- Non-azimuthally symmetric data hard to analyze

Differences from SANS

Data Collection

SANS

- Multiple sampledetector distances to cover whole Q-range
- Transmission and blocked beam measurements
- Counting time per sample < I hour

USANS

- Multiple sets of analyzer angle scans to cover whole Q-range
- Transmission measurement is part of scan, blocked beam is constant
- Counting time per sample I to 12 hours (6 hours usual)

