SANS BASICS

Boualem Hammouda

National Institute of Standards and Technology Center for Neutron Research

hammouda@nist.gov

OUTLINE

- 1. The SANS Technique
- 2. SANS Data Analysis Standard Plots (Guinier, Porod) SANS Models Inverse Fourier Transform Shape Reconstruction Method
- 3. SANS Research Topics
 - A- Phase Transitions in Pluronic P85 Solutions
 - B- Role of Chirality in Peptide Biogels
 - C- Structure of SDS Micelles
- 4. Final Points VSANS and USANS Final Words

2 –SANS Data Analysis

SANS Data Analysis

- Standard Plots (Guinier Plot, Porod Plot)
- SANS Models
- Inverse Fourier Transform
- Shape Reconstruction Method

3. SANS Research Topics

A- Phase Transitions in Pluronic P85 Solutions

B- Role of Chirality in Peptide Biogels

C- Structure of SDS Micelles

A - Phase Transitions in Pluronic P85 Solutions

Proteins

- Proteins are responsible for most biological function. They are made out of peptides. Peptides are made out of amino acids. There are 20 amino acids.

- Examples of amino acids include Lysine (K), Glutamate (E), Tryptophan (W) and Alanine (A)

- Most proteins rotate polarized light to the left. They are left handed or L-type

DNA

- DNA is the blueprint for life. It is the template for the synthesis of proteins

- DNA is made out of nucleotides. There are 4 DNA nucleotides: A, C, T and G

- The human genone contains 6 billion nucleotides making up some 23,000 genes

- Most DNA rotate polarized light to the right. They are right handed or D-type

Peptide Biogels

- Peptides can be synthesized to be L-type or D-type

- Series of L-type and D-type short peptide sequences (11 amino acids) were synthesized.

- These were combined to give L-D- or D-L- heterochiral mixtures and L-L- or D-D- homochiral mixtures

- The resulting gels were investigated using mechanical testing (shear response) and SANS measurements

Results

- Chirality plays a role in the mechanical properties and structure of biogels

- Homochirality confers higher strength (shear modulus) and yield stress value. **Right-right hand-shake is stronger.**

- Heterochirality confers faster gelation kinetics

- Biogel structure consists of main fibers held together by a web of cross fibers

- Fibers for homochiral biogels are thicker and denser

- Advantages conferred to homochirality lead to enhanced stability

C- Structure of SDS Micelles

Final Words
THE SANS PROGRAM AT NIST
200 experiments per year
15 theses per year
80 publications per year
ACKNOWLEDGMENTS
Steve Kline, Marc Taraban, Bruce Yu
REFERENCES
- B. Hammouda, "Probing Nanoscale Structures – The SANS
- M. Taraban, Y. Feng, B. Hammouda, L. Hyland and B. Yu.
"Chirality-Mediated Mechanical and Structural Properties of
Oligopeptide Hydrogels", Chemistry of Materials (2012)
http://www.ncnr.nist.gov/staff/hammouda/