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Typical Scans on HFBS I: Elastic Scan
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Elastic scans scan the motions that are 
slower than instrumental resolution.

The two step relaxation in a typical 
polymer system:
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Typical Scans on HFBS II: Dynamic scan

Need a dynamic window? Turn ON the Doppler!
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Accessible dynamic 
range for HFBS

Velocity of 
monochromator

Relaxation time is inversely
proportional to the broadening!

PMMA/PEO

Spectroscopy Summer School 
2011

Garcia-Sakai, Macromolecules 2004



06/13/2011

Small Molecules and Biology….
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Free volume and mobility in glass formers Proto-type glass former 
Glycerol

Available free volume to drive the 
molecular motions and relaxations

PALS is sensitive to available free volume
and preferentially probes these regions

MSD is sensitive to the mobility 
on the molecular scale.

Higher free volume in the confined glycerol 
and the lower molecular mobility!
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Kilburn et al in Applied 
Physics Letters 92, 033109 
(2008)
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Thermodynamic transition in water
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Paradox in excess entropy!

Solution: A transition at 220K!

Angell, J. Chem. Phys. 77, 3092 (1973)

DSC Pulse gradient NMR

Price, J. Phys. Chem. A 103, 448 (1999)
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VFT:

Arrhenius:

Fragile-to-Strong transition at around 222K in
relaxation time of water!

Confined water in silica

Liu et al., J. Phys: Cond. Matter 18, S2261 (2006)

T

strong

fragile

crossover 222K
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Two temperature laws:

i) 270K – 230K VFT power law

ii) 220K and below Arrhenius law
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Fragile

Strong

dynamic transition in DNA/Lysozyme is 
driven by fragile-to-strong transition in water!

Relation with transition in DNA/Lysozyme hydration water

Chen et al., J. Chem. Phys. 125, 171103 (2006)
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Dynamic transition of protein
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Hydration dependence of dynamical transition
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� Larger amplitude of motions, <r2>Wet - <r2>Dry , in tRNA than in lysozyme.

Å Å
Roh J. H., et al. PRL 2005, 95, 038101. 
Roh J. H., et al. Biophysical J. 2009, 96, 2755. 
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Slaving and biomolecular influence
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Combined dielectric data (solid) and neutron scattering (open) 

� Weaker temperature dependence of faster relaxation time in protein
� Contradicts the concept of “solvent-slaved” dynamics  

Each h = full first hydration layer

Khodadadi S., et al. Biophysical J. 2010, 98, 1321. 

DNA
h = 0.65
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Effect of electrostatic interactions
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Roh J. H., Tyagi M. To be submitted

� Electrostatic stabilization seems to play an important role in facilitating 
the coupled dynamics of biological macromolecules and hydration water.
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Difference of the amount of water 
composing first hydration shell ~ 4 % 

Unfolded tRNA 
seems more fragile!
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Polymers….
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Liquid electrolytes

Leakage, decomposition, flammability 
and tendency to short circuit

Solution?

Polymer electrolyte that can solvate 
and transport Li+ ions

PEO

Liquid/solid electrolytes as battery material

Highly mobile amorphous regions transport Li+

at faster pace leading to higher Li+-conductivity as PEO shows
high conductivity just above the melting temperature.

issues? (semi-
crystalline)

Battery requirements: σ=10-3 S/cm
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PEO based solid electrolytes (with LiClO4)

Combined HFBS 
and DCS data

Conductivity measurements

•PEO crystallization generally lowers the
conductivity at temperature of interest.

•At 50C, a partially crystalline shows, max
conductivity despite being less mobile!

• Ionic conductivity and polymer segmental
dynamics are decoupled!

max conductivity at 
50C ~ 10-5 S/cm

crystalline
PEO

Fullerton-Shirey, Macromolecules 42, 
2142 (2009)
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Move to a different kind of PEO > hyper-branched PEO

HB PEO

linear PEO

•Hyper-branched structure can be  
controlled and varying degree of
crystallinity can be achieved.

•At 50C, conductivity is 10-4 S/cm.
improvement by a factor of 10! At    
RT, an increase of 100!

•50% HB sample shows   
considerable reduced conductivity 
and mobility in NS experiment.

PEO segmental motion and Li+
transport seem to be coupled.

Lee et al, Accepted in Chemistry of Materials
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LiN(CF3SO2)2
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Different segmental dynamics (α(α(α(α−−−−relaxation)
for each component in the blend

50/50

100% 100%

1/T

log ττττ

TgA TgB

Chain connectivity
effects

Segmental Dynamics in Polymers and Polymer Blends

PI
PI in PI/ PVE
PVE in PI/PVE
PVE
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A shift in glass transition temperature
or equivalently, concentration effects
can be used to explain the dynamics
of high-Tg component.

Lodge McLeish Model
Tyagi, Macromolecules, 2007
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Backscattering Measurements: PEO in hPEO/dPVAc

Gaussian distribution of log ττττ
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06/03/2010 HFBS/DCS Tutorial
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Confinement Effects in Polymer Blends
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Confinement Effects in Polymer Blends
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…even inelastic neutron scattering…
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Low-T dynamics of confined CH3I molecule

Full pore = bulk-like peaks + new at 4 µeV

Origin: i) low energy peaks → core    
ii) high energy peaks → surface

full pore
partially filled
bulk

T=5K

Dimeo et al., Phys. Rev. B 63, 014301 (2000)

Porous glass
pore diameter 58Å

Overall picture:
1) Core → high degree of local order (5%)
2) Peaks at 4µeV: surface molecules
i) strongly disordered 70%
ii) weakly disordered  25%
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Rotational tunneling
of the ammonium ions 
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Recent examples of Tunneling and Rotational motions probed by HFBS

2-site/3-site jump

High-T arrangements
of H atoms around B

Verdal, Submitted to J. Chem. Phys.Verdal, J. Phys. Chem. C 2010, 114, 10027–10033
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….Thank you!
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