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Polymer/Nanoparticle Blends Polymer-based Solar Cells
 Nanoparticle dispersionin  * Device characterization

polymer matrices (J-V measurements)
(TEM, SAXS, SANS, AFM)  «  Active layer morphology
* Rheological characterization
characterization of (SAXS, XRD, SANS, NR)
polymer melts » Interfacial phenomena
* Tensile properties at between active layer and
Glassy States contacts (AFM)

« Effect of processing
conditions on device
performance



P. Douglas Godfrin — Wagner Group (UD)

Structure-Property Relationship of Rheology of Shear Thickening Fluids
Cluster Forming Colloids 10 wanvoume
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Biodegradable Polvmers for Biomedical Applications
Avantika Singh, Dr. Megan Robertson

* Functionalization of amphiphilic polymers with reactive entities, and investigation
of their controlled coupling and resulting morphological changes.

Applications : Organic nanoreactors and controlled drug delivery devices.

 Characterization of the relevant thermodynamic and kinetic processes that govern
the evolution of polymer characteristics.

pH physmal
transformatlon

Star-like spherical micelle  chemical coupling Flowerlike micelle, evolves to its
equilibrium size & aggregation number
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THE PHASE BEHAVIOR OF THE TRAPPED HYDROGEN
AT DISLOCATIONS

Material: Deformed Palladium (Pd)
Condition: 5, 300 K ; with and without H,

Methods:

lINS (Incoherent Inelastic Neutron Scattering)
-information for VDOS

SANS (Small Angle Neutron Scattering)
-Spatial profile of deformed Pd
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Poly(ethylene glycol) Hydrogels with Novel
Network Structures

= Research in Biomaterials
- Develop hydrogels for biomaterial applications

= PEG-based hydrogels with a tetra-functional
cross-linker
« Control distance between cross-link
« Reduce inhomogeneities
« Increase elastic modulus

= Characterization with SANS
supports that this type of
network is present
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Polycation PDADMAC Sodium dodecylsulphate SDS/Triton X100

Poly(diallyldimethylammoniumchloride)

0~ O~ Na*

HC—CH °m, g :
=\ _x = &
=
Hs c/ \CH cr i>{<x
JS A
% g
R; ~ 35 nm (Mn = 270K) = \a £l
R, ~ 15 nm (Mn = 90K) N b 3
N\ J
Y
in 0.4 M NaCl aqueous solution
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It can be Induced by changing [+]/[-] via: ionic strength,

stoichiometry of the two macromolecules (polyelectrolyte/micelles
ratio in our case), charge density of the two macromolecules (linear
charge density for polyelectrolytes through molecular weight and
surface charge ratio for micelles through anionic/nonionic surfactant
ratio).

Phase Transitions in Polyelectrolyte-Mixed Micelle Systems

Complex coacervation: separation of a macromolecular solution - composed of two
into two immiscible liquid phases

How do the aggregates interact and
give rise to phase separation?

CLASSICAL COACERVATION
MODEL The dense phase
(coacervate) is structurally
continuous and contains
altered stoichiometry of
polyelectrolyte, micelles and
small ions relative to the

dilute phase.

COLLOIDAL MODEL
The dense phase
(coacervate) is composed of
aggregates indistinguishable
from those in the dilute
phase (supernatant).
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Effect of Polymer Architecture on the Physical Properties
of Thin Supported Films

Bradley Frieberg, University of Michigan, Dr. Peter Green’s Group

1. Effect of Thickness on Average T.* 2. Distribution in T, near Free Surface*
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Nolan Gallagher- University of Nebraska at Lincoln — Rajca Research Group

Nitroxide Radicals as a Replacement
for MRI Contrast Ageoﬂts

* Current MRI contrast agent
(Gadolinium-based materials) has

shown toxicity and has been issued a

“black box warning” by FDA in 2007

 Areplacement MRI contrast agent
should be non-toxic, non-
immunogenic, stable, water soluble,
and effective (high relaxivity)

* One option currently being explored
in our group is nitroxide-based
materials

A

Nitroxide/
PEG based
dendrimer

HiC CH;
HiC I}I CH;
oN 4-HydroxyTEMPO,

a simple nitroxide

Our group has designed several dendrimers
with PEG (polyethylene glycol) and different
nitroxides attached to the surface; these
show promising properties when tested on
mice

SANS would enable us to see the exact shape
of these dendrimers and how water interacts
with the surface

This could lead to the design of dendrimers
with higher relaxivity and more effective
Imaging



Polymer Diffusion in Nanocomposites
Wei-Shao Tung, University of Pennsylvania

Cvylindrical Nanoparticles
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Composto Polymer Research Group
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Structure and Swelling Behavior of Weak Polyelectrolyte Brushes

Chaitra Deodhar’ S.Michael Kilbey 112
' Department of Chemistry, University of Tennessee, Knoxville, TN 37996

i INIVERSITYof
TENNESSEE

KNOXVILLE

2 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831

~ Introduction

N
Through this work I seek to understand the connections between the charge and conformations in polyelectrolyte (PE) brushes
® Complexity in the structure of PEs arise due to the fact they contain ionizable repeat units.
® As the properties of PE brushes depend on the molecular conformation, it is important to understand how their structure is affected by
charge.
®Neutron reflectometry (NR) and ellipsometry are used to characterize the nanoscale structure of the PMAA and P(MAA-co-HEMA)
. brushes. J
Experimental ~—Neutron Reflectometry N\
/ . \ P(MAA-co-HEMA)
Scheme for the Synthesis of P(MAA-co-HEMA) brushes 0o
1E-5- 2
~< >
;{O 3 o pH 8
0 /V 4+ OH < 1E-7 - 0%
tBMA  HEMA o pH3 *
E[%éi-(CHzmHJ\{Br > ©
0O dNbpy,CuBr Dry
Ethyl bromoacetate 1E-9 ] L
Initiator modified Substrate
0.00 005 0.0 0.15
QA"
Brush Nb (A-2) d (A) o (A)
Dry 7.4x 100 219.0 139.5
o pH 3 3.69x 106 352.8 162.0
ol TFAin DCM D,0 3.52x 106 368.8 235.0
HO/S"(CHZ»‘“ 30% viv pH 8 4.69x 10¢ 671.8 180.0
. J
Precursor Polymer Brush — Conclusions A
« Successfully determined segment density profiles from well-
defined, negatively charged MAA containing brushes.
I will continue to pursue careful studies of pH responsive brushes
P(MAA-co-HEMA) to determine how conditions set by synthesis affects the
\ / structure and responsiveness.




Gregory Newbloom

University of Washington, Department of Chemical Engineering
Aavisor. Professor Danilo C. Pozzo

Renewable Energy Technology

Konarka Power Plastics®

Multi-scale Analysis 1s Critical
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Newbloom et al., Mesoscale Morphology and Charge Transport in Colloidal
Networks of Poly(3-hexylthiophene), Macromolecules, 2011, 44 (10), pp 3801-3809
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Cinvestav
heory, Numerical Simulations and

Experiments of Colloidal
Suspensions

Polymeric Solutions
Liquid Crystals
Biophysics

Video Microspoy

X-ray and 3D-Dynamic Light Sgattering

Light Scattering Difusing Wave Spectroscopy
Smal Angle Light Sca’t!ering

-
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Dr. Kitchens Research Group: Metal and

@CLEMSON Cellulose Nanoparticle Synthesis and

VERS Surface Chemistry Modification

. ] ] Cellulose Nanocrystal, CNC
Various synthesis techniques OH O OH OH O OH O

- AOT reverse micelle #
«  Brust

- Direct reduction in agueous media OH O+ OH OH OH OH OH
- Acid Hydrolysis

Size Selectivity

- Gas Expanded Liquids, GXL

- Varying concentration of stabilizing ligand

Surface Chemistries
- Cationic surface charge

- ATRP
Ligand-solvent Interactions
- SANS

Water amount — size of the micelles




Mekonnen Lemma Dechassa
Postdoctoral fellow (Luger Lab)
Colorado State University Department
of Biochemistry and Molecular Biology
Fort Collins, Colorado

Research Interest: Chromatin Structure and Dynamics
Structural biology of the centromere chromatin: centromere nucleosome
assembly mechanism and structure of centromeric chromatin
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Understanding and Improving Electron Extraction from the Organic
Layer into the Back Contact

Comb Structure: Ideal Solar Cell Structure Morphological Model of the Solar Cell

i B
i

Active Layer
Transparent Front Contact

1 1

Light

>

L,~100nm, L,,~1-10 nm

Exciton Diffusion Length
PCBM Cylinders

Characterization: Small angle neutron scattering and reflectivity will be performed to
obtain a concentration profile and analyze the phase separated region.

Goal: The overall goal is to understand the nature of the interface between the active
layer and the back contact. Additionally, we will investigate the influence of regional
morphology on device performance.

The project is a collaboration between Michael Mackay at (UD) and Derrick Swinton at (LU)



QENS Measurement of Low-Temperature dynamics in

Introduction

High pressure denatures most of the proteins at room temperature.
At the same time, for a protein at ambient pressure, it loses its

Protein Hydration Water
QENS Experiment

biological activities and becomes less flexible below a
characteristic low temperature (about 220 K). What will happen

while protein is subjected to high pressures and low temperatures

simultaneously? Would it become less flexible? We discover that

hydrated proteins will remain active and biologically functional at

lower temperatures under moderate pressures. Here we use a term
“soft” or “hard” to describe the protein flexibility. Contrary to the
intuition that proteins will become harder under the compression,
they actually become softer under pressure at low temperatures.
This dynamic behaviour of hydrated protein may be triggered by
the anomalous behaviour of its hydration water at low

temperatures.

Results

9 Ambient Pressure

2
<« >
) Ko

2
©) >
9 K

P=400 bar

P=800 bar

Conclusions

MSD, the degree of “softness” of
the protein, shows that the protein

undergoes a pressure dependent

Beam shutter
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PST chopper [
= Transmitted beam Y. |

moniter (TBM)

= Sample position

| Detectors

/- Monocheomator  jncigent beam

monitor (IBM) \
Primary
beam stop

Quasi-elastic Neutron Scattering

(QENS) experiments were
performed at NG2 in the NIST
Center for Neutron Research
(NCNR).

Relaxing Cage Model

crossover following its hydration water.
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At supercooled temperatures, a water molecule is confined
in the cage formed by its neighbors through H-bonds.

For s/ort times it performs harmonic oscillations and

vibrations inside the cage.

For longer times, the cage begins to relax and the molecule

escapes (a-relaxation).

50

\ 4 Comparison of MSD of protein 9 P=1bar
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Comparison of protein

super-cooled confined water in temperature-

pressure phase diagram.

hydration water and

Pressure dependence of the average
translational relaxation time of protein

hydration water.

1. We observe that hydrated proteins remain soft and biologically functional at lower temperatures under pressures.
2. In our measured low temperature region, increasing the pressure up to 1500 bar can have the same effect on the relaxation time as increasing the temperature.This
phenomenon may be rationalized from the point of view of the existence of the second liquid-liquid critical point in the protein hydration water in the super-cooled region.

3 Protein Sample:



Bcl-2 family of proteins

Apoptosis : form of self mediated cell death

Failure can result in uncontrolled proliferation of harmful cells (cancer).

Promote apoptosis

‘ ’* Inhibit apoptosis —‘

Pro-apoptotic Sensitizers Anti-apoptotic
(BH1-3 domains) (BH3 only) (BH1-4 domains)
Bax* - B?d** | > Bcl-xI
Bak Bim | Bcl-2

Mcl-1

T Puma -
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Migration fro

develop
Yining Xia, S
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e Background of

nanocompoments nanocomponents
in food packaging alone and in
solvent

e Size and size
distribution

e Applications

e Migration and

health risks e Aggregation and

dispersion

e Requlations
J e Concentration

e Characterization of

e Migration
testing and
modelling

* Incorporation of
nanocomponents
into polymers

e Compounding of e One-sided and

polymer-nanocomp. two-sided
blends migration testing
* Processing of e Models
polymer-nanocomp. development and
films validation
e Characterization of * Effects of

migration on the
films

the films



Nanostructure of Primary Plant Cell Wall

PENNSTATF %

Shih-Chun Huang
Dr. Janna Maranas

Cellulose microfibril: Ordered chain and disordered chain

Primary Plant Cell Wall
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W TEMPLE Dr. Rongjia Tao's Research

UNIVERSITY

Rheology For Efficient Energy
Production and Conservation
rheology

Electric Field Magnetic field =>crude oil (35%)
Electric Field => Diesel (20%)

Magnetic field => blood viscosity (30%)

Crude oil => Pipeline Transportation (cold area/off
short)

Oil san => Deep Oil Well
Fuel injector 1
Health? k.
Food?

=0 1100V/mm



Protein Aggregation

Maria Monica Castellanos

« Aggregation limits the efficacy T
and shelf life of protein [
therapeutics and causes a 10F " Tele,
numerous disease states. T
5 1
 Experimental evidence: B N
— Increase of viscosity at low shear |
rates. -
. . 0.01 ||||I 1 |||||||I 1 1 ||||||I
— Upturn in scattering at low ¢ 0.001 0.01 0.1
(peaks for protein interactions). q(A™h)
SANS data on BSA in D20 with PBS at 25 °C. Data for
two BSA concentrations: for synovial fluid (1| mg/mL,
e Simulations to Study protein dark blue) and for blood (44 mg/mL, red). Solid curves
inte ra CtionS 3 nd com pa re W|th are the form factors of BSA calculated.
expe rl m e nts . 'Fl;?lgzr;.f:':tn;;fg:aet?;b&)l"’lé,I\JI.,67K_rIa7u:'e, W. E,, Jones R.L. and Colby, R. H. J.
PENNSTAT DEPARTMENT OF
ﬁ MATERIALS SCIENCE ano ENGINEERING
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Michigan Chemical Engineering:

Dr. Fogler’s Research Grou

Funded entirely by industrial sponsors

Research areas:
O Paraffin deposition
O Asphaltene deposition and precipitation™*

O Scale deposition

Asphaltenes are a crude oil fraction that form
aggregates/nanoparticles in solution

O | use SANS and SAXS to study asphaltene structure and
behavior



Microstructure evolution in Catanionic Surfactant mixtures
Hari Katepalli, Arijit Bose
Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881

Motivation:

To test a hypothesis that a balance between line and bending energy critically impacts
structures and dynamics in the micelle to vesicle transition.

Understand the principles that govern evolution dynamics in surfactant systemes.
Finding ways to control these transitions

Approach:

Using different surfactant systems based on their expected line and bending energies.
Use micro fluidics to control residence times and mixing conditions.
Image using time resolved cryogenic transmission electron microscopy

t capillary
1.D. = 500pum

CEVS integrated with micro-fluidic

Different routes for surfactant self-assembly . .
chip for making sample for Cryo-TEM

Financial support: National Science Foundation; Collaboration — Dr. Tripathi group, Brown University



Molecular Simulations to Study Thermodynamics of
(-CH.-CH.-O-)n Solutions

Mangesh I. Chaudhari, Lawrence Pratt
Tulane University, New Orleans, LA, 70118

Polyethylene Oxide polymers are
intrinsic to oil spill dispersants and
need efficient thermophysical modeling
to facilitate comparison between lab-
scale, field-scale, and ocean-scale
results.

Molecular simulations are done on
these polymers to understand their
thermodynamic properties in solutions

Direct measurement of polymer and
solvation structure is essential for such
modeling and require X-ray or neutron ,
diffraction studies of these polymer
solutions

[N}
[
|

One of the simulation result for atom
pair correlation is shown here and we
want to confirm it with diffraction
experiments and subsequently include
these results in available extended Flory
Huggins model
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Shear Induced Disruption of Nanoemulsion
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tﬁ University at Buffalo The State University of New York

Directed Macromolecular Assembly in Solution and at Surfaces

Ankitkumar Fajalia and Marina Tsianou
Department of Chemical and Biological Engineering, University at Buffalo

Surfactant micelle formation and disruption under different conditions and environments

= QObjective: How do cyclodextrins affect the micelle structure i 6\
i ‘ ? & 'Q‘,-}a‘ N
and the interactions between them? Vicelles 5/3?\_, &
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= Characterization Technique 16633‘ :

everw

* Small angle neutron scattering . ey T
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(Contrast matching with deuterated surfactant) '..‘l. \ @#’JE}%;? ‘h
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Structure and conformational changes of interpolyelectrolyte complexes in agueous media or

at surfaces (layer-by-layer films)
= System
* Polyelectrolytes
e Cyclodextrins (sulfonated B-CDs)
 Templates: glass slide, mesoporous silica(MS)
= Characterization Techniques to be used
* Small angle X-ray scattering
* Neutron reflectometry
* SEM, DLS, AFM, FTIR, TGA, UV spectroscopy

Removal of >

template -

Hollow microcapsule



' ISItY Jinkun Hao
Advisor: Robert A. Weiss

Current Research Projects in R. A. Weiss's Group I

IONOMERS

d Controlled Surface Microstructure

»  Hydrophobically Modified Hydrogels

- Hydrogels »  Double Network Hydrogels

0.6
Ry
| R=CHs o 2.6Li-SPS (M ~ 4 kg/mol)
o] >, 03
,,/f\l l/Dwrrf SO,CqF 17 g 02} Egg;gggmmmmm
113 a DF22-2 /36.4?1:mm;?n"
0 CH,CH4 Zo | | q‘ | |
. 0 300 600 900 1200 1500 1800
Strain / %
1 Rheology of Ionomers O Shape Memory Polymers 1 Supramolecular Polymers
Zn-SEPDM containing 33.3wt % ZnSt
SPS: 4kg/mol (unentangled melts) f&) %
. : + —>
6 T m
5F o - vt -SO;H  H,N-

2,

Log e} (Pa)
I




University of California Riverside, Chemistry

Mechanochemistry and Molecular Engineering

Sebastian Jezowski

Application of mechanical force to selectively break or form a covalent bond
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m Lyophilization of Proteins and Pharmaceuticals
s Process and Formulation

m Formulation - Impact on Storage Stability

Formulation (Protein + Excipients)
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SITYor Hierarchical self-assembly of block copolymer  Pittware
@E/IEARWARE éINSTITUTE

and peptide via kinetic control
Darrin J Pochan Group

68 ¢
THF Dl water —tq5gs .

[

titration/ R5
quickly adding

PAA-b-PMA-b-PS

EDDA
Scheme of self-assembly of triblock copolymer

= - -e¥

Bilayer structure (discs or vesicles) Cylindrical micelles Spherical micelles

higher interfacial curvature is preferred at higher water content

o

(A) toroids; (B) Striped cylinders; (c) helix; (D) porous spheres
(E) multicompartment/multigometry micelles.

Science. 2004, 306,94
Science. 2007, 317,647
Soft Matter 2008, 4, 90
Nano Letter, 2008,8, 2023
Soft Matter 2011, 7, 2500
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Scheme of Max 1 folding and assembly
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Unfolded Peptide Facial Assi)c:iaﬁon Fibrillar Structure
(Liquid) (Hydrogel)

Disrupted Network  Recovered Network
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b MAX1: VKVKVKVKVPPLPTKVKVKVKV-NH,
MAXS8: VKVKVKVKVPP'PTKVEVKVKYV-NH,

Scheme of formation of B-hairpin that undergoes a lateral
and facial self-assembly affording a rigid hydrogel with a
fibrillar supermolecular structure.

(F) (G) (H)
(F): fibril structure formed by MAX1 (G): fibril structure
formed by MAXS8; (H): MAX8 hydrogels prepared in a syringe

PNAS, 2007, 104, 7791
Biomaterial, 2008, 29, 4164
JACS, 2005, 127, 17025

Soft Matter, 2010, 6, 5143.



The Self-Assembly of Zeolite Catalysts _ Tme Pariciesizo distribution Microstructure
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- Zeolite beta 1s a model material to study P A —
the effects of Al and B heteroatom  '™| . /\ . Y ™)
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- 88Z7-63 has the same structure with zeolite
beta_ but in a hlghly ordered fashion and the The intergrowth of colloid zeolite beta and particles
particles. size distribution simulated by SAXS & SANS

— The aim of this project 1s to understand why the mirco-structure of these
two zeolites 1s so different. X-Ray & Neutron Scattering (SAXS, SANS and
USANS) are necessary to characterize the processes of crystal growth and
formation.
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Sokol’s Research Group

Low Energy Neutron Source
Our research efforts focus S
on the microscope structure | —
and dynamics of condensed
matter using x-ray and
neutron scattering
techniques.

SANS Science Applications Polymers
Molecular self-assembly and interactions in complex .
fluids; Colloids and microemulsions; Micelles; Surfactant Studies

Materials Science fu=t  Gadye-035 =085 0Sahel  Gy=l
Phase separation in alloys and glasses; Morphologies ¢ @ LA PN )
of superalloys; Nanocomposites ,
Biological Macromolecules

Size and shape of proteins; macromolecular complexes

Hierachical biological structures; Biomembranes
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Bosseyv, et.al., J. Phys. Chem. B 1999, 103, 8259-8266




