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Neutron scattering experiments measure the flux Φs of neutrons 
scattered by a sample into a detector as a function of the change in 
neutron wave vector (Q) and energy (hω).

The expressions for the scattered neutron flux Φs involve the positions 
and motions of atomic nuclei or unpaired electron spins.

EnergyMomentum

hQ = hki - hkf hω = hωi - hωf

hωn = h2kn
2/2mhk = h(2π/λ)

Φs provides information about 
all of these quantities!Φs = F{ri(t), rj(t), Si(t), Sj(t)}

Φs(Q,hω) =neutrons
sec–cm2
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Neutron Scattering 
Cross Sections

The “cross sections” are what 
we measure experimentally.

We define three cross sections:
Consider an incident neutron beam 
with flux Φi (neutrons/sec/cm2) and 
wave vector ki on a sample.
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Neutron Scattering 
Cross Sections

Clearly: dΩσ = dΩ= dEd2σ
dΩdE

dσ
dΩ

Thus: σ >> d2σ
dΩdE
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σ
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.

What are the relative 
sizes of the cross sections?

Typically, dσ
dΩ

d2σ
dΩdE~ 106 x



Neutron Scattering 
Cross Sections

What are the physical meanings 
of these three cross sections?

σ

d2σ
dΩdE

dσ
dΩ

Probability that the nucleus will scatter a neutron.

Probability that the nucleus will scatter a neutron into dΩ.
(Diffraction – structure.  Signal is summed over all energies.)

Probability that the nucleus will scatter a neutron into dΩ,
having a final energy between E and dE.
(Inelastic scattering – dynamics.  Small, but contains much info.)



Elastic Scattering
• No change in neutron energy
• Probes changes in momentum 

only

Basics of Neutron 
Scattering

Inelastic Scattering
• Change in neutron energy
• Probes both momentum and 

energy changes

d2σ
dΩdE

Note that both of these 
cases are described by

= dσ
dΩ

kf

ki

Q = ki - kf2θ

kf

ki

Q = 2ksinθ = 4πsinθ/λ
θ

sinθ = (Q/2)/k

ELASTIC (ki=kf)

ki

kf Q
2θ

kf

ki

Q
2θ

INELASTIC (ki=kf)

Energy gain (hω>0) Energy loss (hω<0)hω = hωi - hωf



Monochromator

Sample

Analyzer

Single Detector
Neutron Source

Triple-Axis 
Spectroscopy



Triple-Axis 
Spectroscopy



Lattice vibrations: phonons

Spin precessions: magnons
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These vibrational modes occur as a result of the balance 
between the fluctuations (thermal or kinetic energy) and 
restoring forces (potential energy).
They are long-ranged in space and long-lived in time.

What happens if there are no restoring forces?
What happens if the spatial pattern changes with time?

We use neutron spectroscopy to 
study the dynamics of solids

Correlated Motion in Ordered SolidsDynamics of 
Solids



Constant-E scans:  
vary Q at fixed hω.

Constant-Q scans:  
vary hω at fixed Q.
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Q

Φs
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Neutron Inelastic 
Scattering

Neutron Measurements 
of Phonon Dispersions.

There are two primary methods of measuring 
the neutron scattering cross section S(Q,ω).



wave vector
(momentum)

vs. length

Spin-Spin Correlations
Neutron Inelastic 

Scattering

frequency
(energy)
vs. time



Why use SPINS for this study? 
Because SPINS can
- easily access desired Q and hω
- cover the range 0.1<hω<10 meV
- perform diffraction
- provide a flexible choice between 
high resolution or high intensity

The Instrument 
SPINS



SPINS Operation Mode I:
Conventional Triple Axis (TAS)

TAS is ideally suited for probing small regions of phase space

Shortcoming: Low data collection rate

A single point at a time

Multicrystal analyzer and position-sensitive detector

Improvement

Monochromator

Sample

Analyzer

Single Detector
Neutron Source

The Instrument 
SPINS



Monochromator

Multicrystal Analyzer

Sample

Single Detector
Δ2θ

L = distance from sample to HF analyzer
wa = total width of HF analyzer

Δ2θ = wa sinθa/L ~ 9 degree for Ef=5 meV at SPINS

Relaxed Q-resolution

Useful for studying systems with short-range correlations

The Instrument 
SPINS

SPINS Operation Mode II:
Horizontally Focusing Analyzer



Sample

Flat Analyzer

Position-Sensitive
Detector

Δ2θi

θa
θa

i

θa
i = θa + Δ2θi = θa - atan(x sinθa/(L+xcosθa))

kf
i = τa/2sinθa

i

Qi = ki - kf
i

Survey (hω-Q) space by changing the
incident energy and scattering angle

Probes scattering events at different energy 
and momentum transfers simultaneously

hω

Q

~1meV

The Instrument 
SPINS

SPINS Operation Mode III:
Multiplexing Detection System



The PSD measures
Ei-Ecutoff

Ei
S(Q,ω) dω

Large angular acceptance = w / L ~ 11o for SPINS

Sample
Low-pass Filter

PSD

L

w

Be or BeO

The filter passes only those neutrons with 0 < Ef < Ecutoff

The Instrument 
SPINS

SPINS Operation Mode IV:
Position Sensitive Detector in 2‐Axis Mode



Basics of Magnetism

Why are some materials magnetic?  Because of the electrons!
In classical physics, a flow of charges (i.e. current) will generate a magnetic field. 
(Ampere’s Law) Therefore, a closed loop of current will generate a magnetic field just like a 
magnetic dipole.
In quantum physics, electrons exhibit an intrinsic magnetic field without angular motion. 
This quantized magnetic moment is called a “spin”, and the eigenstates of spin can be either 
up or down w.r.t an arbitrary axis. ( ↑ = ½ or ↓ = -½ ) 

nIr ˆ2πμ =
r

electromagnet permanent magnet

e-

Interestingly, though neutrons are charge neutral, they 
exhibit a magnetic moment. This is why neutrons are 
able to scatter from the magnetic moments of electrons.



Magnetic interaction energy
Isotropic Heisenberg type: 

Jij < 0 for the nearest neighbors: 

Jij > 0 for the nearest neighbors: 

Noncollinear order may also exist due to the combinations of 
ferromagnetic/antiferromagnetic interactions and/or antisymmetric exchange 
interactions of the type:

Paramagnetic phase
If temperature is greater than the interaction energy (kT >> J |S|2), thermal energy 
will overcome the binding energy for the magnetic order.
As a result, spins will lose long‐range order and fluctuate rapidly. In other words, 
they become disordered.

Other types of disordered phases
Spin glass: frozen disordered magnetic moments
Geometrical frustration
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Calculation of Magnetic Neutron Scattering Intensity

Magnetic neutron scattering cross section

But if we consider only up and down spins for diffuse 
quasi‐elastic scattering, all we need is the following 
simple equation:
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Magnetic Properties of Ba3Mn2O8

- The hexagonal antiferromagnetic 
bilayer Ba3Mn2O8 is a quasi-2D 
frustrated antiferromagnet with a 
quantum critical phase diagram (H vs. T).

- In applied magnetic field, BMO has two 
sequential magnetically ordered phases
(separated by 4 quantum critical points)

- The chemical structure of BMO involves
double-layered triangular lattices in the
basal plane, stacked along the c-axis with
a periodicity of three.



In order to understand the quantum critical phase diagram of BMO, we need to 
understand the zero-field exchange paths and constants. 

(The critical field value is directly related to the magnetic excitation energy)

Now the question are: 
(1)  What do we need to measure in order to determine the exchange paths and

exchange constants  between a single dimer and interdimer ?
(2)  What type of sample (powder or single crystal) we should use?

While the measurements of powder sample provide important information about 
the underlying physics of the system, measurements of single crystal sample can
uncover the hidden information.

In the case of BMO, you will see that measurements on a single crystal 
sample are essential to determine the correct exchange paths and constants.

Magnetic Properties of Ba3Mn2O8



What is Geometrical Frustration?

Definition according to Wikipedia
“a phenomenon in which the geometrical properties of the atomic 
lattice forbid the existence of a unique ground state, resulting in a 
nonzero residual entropy”

To put it simply, it means a situation in which things do not 
order because of their geometrical property, even when the 
temperature is low enough to induce order of some sort.

Degenerate ground states: there are many possible ways to satisfy 
the condition of the lowest energy.
Zero‐energy fluctuations: since the degenerate ground states are 
equal in energy, the system will easily move from one state to 
another and experience no restoring force.
Residual entropy at T = 0 K: configurational entropy due to multiple 
possible choices



Example of Geometrical Frustration

Antiferromagnetic Ising spins
(if only up or down 

orientations are allowed)

?

Infinite number of 
degenerate ground strates!

infinite lattice



Quantum Magnetic Phase

- A magnetic system enters into a quantum magnetic 
phase at T = 0 K via second order phase transition.

- The quantum phase is described by the divergence 
of the order parameter in both space and time.

- The system can be driven to a quantum critical point
using an external tuning parameter, such as magnetic
field, pressure, or chemical doping of the crystal structure.

- Neutron scattering is a powerful technique with which to explore the dynamic properties 
of   the system in quantum critical state.

Magnetic order regime

T (K)

δ (a. u.)

QCP



Magnetic Properties of Ba3Mn2O8 …

T = 1.8K



Neutron Scattering Measurements of BMO
Measurements using powder sample: T = 1.4 K

- At T = 1.4 K, a single dispersion
curve is observed, indicating 
singlet ground state 

- Measurements on powder sample
also suggest a spin gap of ~ 1 meV

The Heisenberg Hamiltonian describing the dimer and interdimer magnetic interaction is given by, 
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where D is single-ion anisotropy determined from the µSR measurement.  



Calculations suggest triplet excitation
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The calculations were performed
using RPA dispersion for
Heisenberg exchange coupled dimers,
given by

( ) ( ) ( )TRQM ζω Δ+Δ= 22Qh

(Where Δ is the spin gap, R(T) is the thermal population
Difference between ground state and excited state, M is the
Transition matrix element and ζ(Q) is the Fourier sum over interactions beyond dimer exchange.)

Calculation includes weak inter-dimer interaction that is believed to propagate triplet excitations.

(M. Stone et al., PRB 77, 134406 (2008)) 



Measurements using powder sample continued …

- Interestingly, measurements at relatively
higher temperature show the singlet peak
at ~ 1.25 meV splits into two peaks at ~
1.5 and 2.9 meV

- Singlet-triplet excitations ??

Measurements on single crystal samples are necessary to confirm this.

Data are fitted by two Lorentzian functions,
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Measurements using single crystal sample:

Clearly, the dispersion curve is different from the one obtained from the powder sample

Instead of a single dispersion curve, suggesting singlet state, multiple branches are observed.

(M. Stone et al., PRL 100, 237201 (2008)) 



Good fit of the data is obtained by including the NNN interaction in the Hamiltonian, given by 

where

Note the ω4 term (resulting from NNN interaction)



- Inclusion of NNN interactions is necessary
to explain the dispersion curve

- The NNN interaction term in the Hamiltonian
suggests that the interdimer interaction 
plays an important role in this system, thus 
extends the exchange path along c*

- If we set J4 = 0 in the previous equation,
the dispersion behavior cannot be
explained correctly (as shown by the dashed
green curve in upper panel)



A cold-neutron, triple-axis spectrometer, such as SPINS, is a vital tool for 
explorations of low-energy magnetic phenomena.

Magnetic properties of a system are governed by the underlying magnetic 
exchange couplings and the connecting paths.

Measurements of single crystal samples can provide the most information 
about  the underlying spin dynamics.

SUMMARY
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