

Neutron scattering intensities

Intensity
$$\propto \left(\frac{k_f}{k_i}\right) \left(\frac{\sigma_s}{4\pi}\right) S(Q, E)$$

The measured intensity is proportional to the product of quantities that depend ...

• on the method of measurement, e.g. the choice of E_i,

CHDNC

- on the strength of the interaction between neutrons and the sample (i.e. on the "scattering cross section"), and
- on the sample itself, through the scattering function S(Q,E).

NCNR Summer School 2011

Event rates The sample is placed in a beam whose current density (or "flux") is Φ (n/cm²/s). The current, i.e. the number of neutrons hitting the sample, is $I_0 = \Phi A$ n/s. **The scattering rate is:** $I_S = I_0 p_S = (\Phi A) (\Sigma_S t) = \Phi V \Sigma_S = \Phi N \sigma_S$ **The absorption rate is:** $I_A = I_0 p_A = (\Phi A) (\Sigma_A t) = \Phi V \Sigma_A = \Phi N \sigma_A$ Hence the transmission rate is $I_T = I_0 p_T = I_0 - I_A - I_S = (\Phi A) (1 - \Sigma_T t)$ where $\Sigma_T = \Sigma_A + \Sigma_S$ is the total removal cross section.

Single particle motion

So far we have implicitly assumed that all atoms of a given element have the same scattering cross section (which is true in the x-ray case).

But what if they don't? This can happen if there is more than one isotope and/or nonzero nuclear spins. In that case there is a second contribution to the double differential cross section. In the simplest case we have:

$$\frac{d^2\sigma}{d\Omega dE_{\rm f}} = \frac{\sigma_{\rm coh}}{4\pi\hbar} \frac{k_{\rm f}}{k_{\rm i}} S(Q,\omega) + \frac{\sigma_{\rm inc}}{4\pi\hbar} \frac{k_{\rm f}}{k_{\rm i}} S_{\rm S}(Q,\omega)$$

where

- $S(Q,\omega)$ reflects the collective behavior of the particles (e.g. phonons)
- $S_{s}(Q,\omega)$ reflects the single particle (self) behavior (e.g. diffusion)
- σ_{coh} and σ_{inc} are **coherent** and **incoherent** scattering cross sections respectively

NCNR Summer School 2011

NIST

Self correlation functions

Most neutron spectrometers measure $S(\mathbf{Q},\omega)$ and $S_{S}(\mathbf{Q},\omega)$.

$$I_{s}(\vec{Q},t) = \hbar \int S_{s}(\vec{Q},\omega) \exp(i\omega t) d\omega$$
$$S_{s}(\vec{Q},\omega) = \frac{1}{2\pi\hbar} \int I_{s}(\vec{Q},t) \exp(-i\omega t) dt$$

The quantity $G_s(\mathbf{r},t)$ is the "self time-dependent pair correlation function":

$$G_{s}(\vec{r},t) = \frac{1}{(2\pi)^{3}} \int I_{s}(\vec{Q},t) \exp(-i\vec{Q}.\vec{r}) d\vec{Q}$$
$$I_{s}(\vec{Q},t) = \int G_{s}(\vec{r},t) \exp(i\vec{Q}.\vec{r}) d\vec{r}$$

The self functions contain detailed information about the <u>single particle</u> (self) dynamics of materials.

NCNR Summer School 2011

Which instrument to use (dynamics)? $(slow) \longrightarrow S(O \omega) \longrightarrow (fast) \rightarrow$						
nstrument Resolution		delta- function peak	, Narrow peak	Medium width peak	Broad peak	Flat back- ground
	Low resn. (broad)	(Elastic)	Elastic	Elastic	Match	(Flat)
	Med. resn. (medium)	(Elastic)	Elastic	Match	Flat	(Flat)
	High resn. (narrow)	(Elastic)	Match	Flat	Flat	(Flat)
NCNR Summer School 2011						

Useful references (1)

• G. L. Squires, "Introduction to the Theory of Thermal Neutron Scattering", Dover Publications (1996) (ISBN 048669447), and references therein.

• S. W. Lovesey, "Theory of Thermal Neutron Scattering from Condensed Matter", Clarendon Press, Oxford (1984).

• G. Shirane, S. M. Shapiro, and J. M. Tranquada, "Neutron Scattering With a Triple-Axis Spectrometer", Cambridge University Press, Cambridge (2002).

• M. Bée, "Quasielastic neutron scattering", Adam Hilger, Bristol and Philadelphia (1988).

•B. T. M. Willis and C. J. Carlile, "Experimental Neutron Scattering", Oxford University Press (2009).

• D. S. Divia, "Elementary Scattering Theory", Oxford University Press (2011).

NCNR Summer School 2011

