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Abstract

We will study the singlet-triplet dispersion in the geometrically frustrated antiferromagnetic

dimer Ba3Mn2O8 using inelastic neutron scattering. In so doing, we will gain an understanding of

the principles of Triple-Axis Spectroscopy (TAS) and learn how to analyze the TAS data obtained

to extract physical information about the system being studied.
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I. INTRODUCTION

One of the most useful properties of neutrons is that they have magnetic moments (S =

1
2
). As a result, neutrons interact with magnetic potentials in materials, which are ascribed

to either unpaired electrons or nuclear moments. Contrary to the scattering strength from

a nonmagnetic nucleus that is a scalar property, the scattering “strength” from a magnetic

potential is in fact a vector property and is proportional to magnetic moment or spin.

Therefore, orientational periodicity matters as much as positional periodicity for magnetic

neutron scattering. If there are no spatial correlations, either orientational or positional,

among magnetic moments to be studied, signals from magnetic neutron scattering will be

incoherent. This is often the case for nuclear magnetic moments since their potential is

strongly localized to each nucleus. On the other hand, electronic magnetic moments are

often spatially correlated via long-range Coulomb exchange interactions, resulting in well-

defined periodicity.

A. Magnetic structure

Once the positional periodicity of magnetic ions is given from crystal structure, one of the

main features of interest in terms of magnetic correlations is the pattern of spin orientations,

often called magnetic structure, and is one of the most often studied subjects of neutron

diffractions. Figure 1 (a) shows disordered magnetic states at two extremes. Paramagnet

is a state where each spin fluctuates rapidly and randomly without any correlations to its

neighbor. Any magnetic material will become paramagnetic at high enough temperatures

where the thermal energy is greater than the magnetic energy. The net magnetic moment

for each spin will be zero for a time scale larger than the fluctuation. Such a state is

similar to gases where the periodicity of atomic positions is lost due to thermal fluctuations.

When the temperature is lowered, fluctuations will be suppressed and each magnetic ion

will have a non-zero net moment. Spin glass is a state where there is no well-defined

long-range periodicity even after thermal fluctuations are suppressed. Quite often, however,

short-range correlations between nearby magnetic ions should exist, and the absence of long-

range order is due mostly to extrinsic reasons. On the other hand, a majority of magnetic

materials show long-range periodicity when the temperature is lowered enough. There are
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FIG. 1: (a) Schematic illustrations of disordered spin states. (b) Examples of simple magnetic

ordering patterns. (c) Classical representation of spin wave excitation in an one-dimensional fer-

romagnet.

a great diversity of known magnetic structures, yet most of them can be classified into the

classes shown in Figure 1 (b). The simplest yet contrasting cases are a ferromagnet and an

antiferromagnet, where the nearest neighbor spin correlations are opposite with respect to

each other. Additional interactions, for instance, between the second nearest neighbors may

induce non-collinear spin structures. The temperature of magnetic transition will depend on

the strength of exchange interactions and the size of available spin moments. The strength

of the major exchange interactions may be estimated from the temperature dependence of

paramagnetic inverse susceptibility (1/χ). (See Figure 2) In antiferromagnets, 1/χ−T curve

makes an intercept at T < 0, which is referred to as Curie-Weiss temperature, ΘCW .

B. Magnetic fluctuations

The magnetic ground state is where the magnetic energy of the system is minimized.

Therefore, the ground state magnetic structure must be determined by the magnetic Hamil-
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FIG. 2: Typical temperature dependence of magnetic susceptibility χ = ∂M/∂H and 1/χ for (a)

ferromagnets and (b) antiferromagnets. H and M are applied magnetic field and magnetization of

the material, respectively.

tonian that describes the energy of the system. The simplest yet useful form of magnetic

Hamiltonian may be written as below:

H = −1

2

∑
i 6=j

JijSi · Sj, (1)

where Si and Sj are magnetic moments at i-th and j-th ions, respectively, and Jij is an

isotropic Heisenberg exchange strength constant between them. In the given form, the signs

and strengths of J will determine the magnetic structure, that is, J > 0 for ferromagnets

and J < 0 for antiferromagnets.

While the signs of major exchange interactions may be deduced from simply observing

magnetic structures, their quantitative strengths can be obtained by measuring spin fluctu-

ations or excitations. It is because such interaction strength will work as a restoring force

when spins fluctuate and deviate from their ordered directions. In ordered magnets with

isotropic spins, fluctuation of each spin will propagate through the lattice and produce wave-

like excitations of finite energy depending on directions of propagation. Although spins and

their fluctuations are quantized quantities, most of the time their fluctuations can be approx-

imately yet fairly closely understood by mimicking behaviors of classical waves. A classical
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illustration of ferromagnetic spin wave propagation is shown in Figure 1 (c). Dynamics of

magnetism is not limited to dispersive wave-like excitations, but also includes various local-

ized excitations such as crystal field transitions, singlet-to-triplet excitations, etc. Neutron

spectroscopy is, again, one of the most powerful technique to quantitatively investigate the

diverse range of magnetic interactions in condensed matter.

The detailed understanding of spin wave excitations is beyond the scope of this experi-

ment. Instead, we will study a different type of magnetic fluctuation arising from magnetic

short-range correlations. If magnetic fluctuation of a magnetic ion is hampered from prop-

agating through the lattice for any reason, the fluctuation may be localized and/or decay

quickly. For the particular problem to be studied in this experiment, such a localized fluc-

tuation is ascribed to topologically induced spin disorder.

II. BASICS OF NEUTRON SCATTERING

A. Neutron as a probe of matter

It is the ability of the neutron to exchange a measurable amount of energy with a liquid

or solid sample that makes it useful as a probe of the various dynamical phenomena in

condensed matter systems.1 Typical neutron energies available at a reactor source can range

from 100 – 500 meV (hot), to 5 – 100 meV (thermal), to 0.1 – 10 meV (cold), where 1

meV = 10−3 eV = 8.06 cm−1. A number of different methods can be used to prepare a

monochromatic (or monoenergetic) neutron beam having energies that are comparable in

magnitude to, for example, those of the lattice vibrations in a solid (phonons), the spin

excitations in a magnetic system (magnons), the torsional, bending, or stretching vibrations

of a polymer chain, or the rotational motions in a molecular solid (librons). It is usually

quite easy to detect the change in the neutron energy after scattering from a sample since

the energy transferred to or from the sample ∆E = Ei−Ef generally represents a significant

fraction of the initial and final neutron energies Ei and Ef .

The energy ∆E transferred during the interaction between neutron and sample can be

used to create an excitation (such as a phonon or magnon) of the system, in which case the

neutron loses an amount of energy ∆E equal to the energy of the excitation. Conversely, the

same excitation can give up its energy to the neutron, in which case the excitation is said
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to be annihilated. In either case, the physics of the excitation as revealed by the absolute

change in the neutron energy is the same. The energy transfer ∆E is often expressed as a

frequency of vibration through the relation

∆E = h̄ω, (2)

where 2πh̄ = h = 6.626× 10−34 Joules-seconds is Planck’s constant, and ω is the frequency

of vibration of the excitation. Since frequency and time are inversely related, the neutron

energy transfer h̄ω reflects the time scale of the dynamics.

Question: Estimate the value of (∆E/Ei) required to observe an optic phonon

with an energy of 10 meV using x-ray, light, and neutron scattering techniques

assuming the values of Ei = 7,000 eV, 2 eV, and 30 meV (0.030 eV), respectively.

Which technique is best suited for this measurement?

In addition to having energies that are well adapted to the study of a large variety of

dynamical phenomena, neutrons also possess the ability to provide, simultaneously, unique

information about the geometry of these dynamics through the exchange of momentum with

the sample. This is done by measuring in what directions (i. e., through what angles) the

neutrons scatter. The momentum of a neutron varies inversely with the neutron wavelength

λ, and hence an accurate measure of the momentum transferred between sample and neutron

during the scattering process will in turn provide information about the spatial scale of the

dynamics being probed. Such an accurate measure is relatively easy to obtain as long as

the neutron wavelength is comparable to the length scale of the motions of interest.
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Question: The relationship between wavelength and energy for the neutron is

given by:

E =
h2

2mλ2
= 81.81(meV · Å2)/λ2, (3)

where m = 1.675 × 10−24 grams is the mass of the neutron. Using this equation,

estimate the wavelengths corresponding to hot, thermal, and cold neutrons avail-

able at a reactor source. How do these wavelengths compare with the length scales

associated with the dynamics or motions you are specifically interested in?

In the following sections we will discuss the partial differential scattering cross section,

which is the actual physical quantity that is measured by neutron spectroscopy. We then

outline the basic operating principles behind a triple-axis spectrometer (TAS), the concept

for which Bertram Brockhouse earned the 1994 Nobel prize in physics shared jointly with

Clifford Shull.

B. The Partial Differential Scattering Cross Section d2σ
dΩdEf

Most neutron spectroscopic techniques can be reduced to a measurement of what is called

the partial differential scattering cross section, or d2σ/dΩdEf , as a function of the neutron

energy transfer h̄ω and the neutron momentum transfer Q.1 The quantity Q is known as

the scattering vector, and has units of inverse length. In the scattering process between the

neutron and the sample, the total momentum and energy of the system are conserved, i.e.

Q = ki − kf , (4)

h̄ω = Ei − Ef = ∆E. (5)

Hence the energy or momentum lost (or gained) by the neutron when it scatters from a

sample is gained (or lost) by the sample. In the previous equation, the quantities ki and kf

refer to the initial and final neutron wavevector, respectively, and point in the direction of

the incident and final (scattered) neutron beam. The relationship between ki, kf , and Q can

be represented by the scattering triangle shown in Fig. 3. The magnitude of the neutron

wavevector k is 2π/λ, and is related to the neutron energy via
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FIG. 3: Scattering triangle. The neutron is scattered through the angle 2θ and the scattering

vector, Q, is given by the vector relationship Q = ki − kf .

E =
(h̄k)2

2m
= 2.072k2[meV · Å2], (6)

From this last equation, one can obtain the second equation in Fig. 3 which relates the

energy transfer to the magnitude of the initial and final wavevectors. The angle between ki

and kf is commonly denoted by 2θ, and represents the total angle through which a neutron

is scattered by the sample. Note that the convention followed in this summer school is such

that the energy transfer h̄ω is positive when Ei > Ef , i. e. when the neutron loses energy to

the sample during the scattering process. This convention of defining when h̄ω is positive

varies among neutron scattering facilities.

The partial differential scattering cross section is defined as the total number of neutrons

scattered per second by the sample into a unit of solid angle dΩ in a given direction, having

final energies E that lie between Ef and Ef + dEf . It is normalized by the neutron flux

incident on the sample Φ0 (measured in neutrons/sec/cm2) so that it has units of area/(solid

angle)/energy. If one integrates the partial differential scattering cross section over the entire
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solid angle (= 4π steradians), and all final energies (0 ≤ Ef ≤ ∞), one obtains the total

number of neutrons scattered out of the beam per second by the sample. (This assumes

that the absorption of neutrons by the sample, which can often occur, is negligible.) This is

known as the total scattering cross section σ, which has units of area. Thus σ represents the

scattering strength of the sample, and can be viewed as an unnormalized probability that an

incident neutron will be scattered. If one compares the value of σ for hydrogen with that of

aluminum, it will be clear that different elements can have enormously different scattering

strengths.

Question: The scattering cross section for x-rays is a strong and monotonically

increasing function of atomic number Z. This is because x-rays scatter from the

electrons of an atom, which increases with increasing Z. Neutrons, by contrast,

scatter from the atomic nucleus via short-range nuclear forces. If you plot σ for

neutrons versus Z, do you see any trend? In what ways might this be advanta-

geous? (Values for σ can be obtained from the NCNR Summer School web page

under “Course Materials,” or at http://www.ncnr.nist.gov/resources/n-lengths/.)

It is instructive to consider the relative sizes of σ and d2σ/dΩdEf . Clearly σ, which

represents the total number of neutrons scattered per second by the sample, is many orders

of magnitude larger than d2σ/dΩdEf , which is an analyzed quantity both in energy and

direction. On the other hand, the partial differential scattering cross section provides a

correspondingly greater amount of information because it contains all of the details of the

individual and collective motions of the atoms, molecules, and/or any atomic magnetic

moments that comprise the sample. The differential cross section dσ/dΩ, which is what is

measured in a diffraction experiment, lies between σ and d2σ/dΩdEf in size. As the elastic

component dominates in dσ/dΩ, it gives the time-averaged (equilibrium) positions of all of

the nuclei in the sample, and is used to determine the crystal structure.

The partial differential scattering cross section can be cast into a useful mathematical

form via the formalism outlined at the end of the neutron scattering primer written by Roger

Pynn2 (which the summer student is presumed to have read). With a small deviation from

the notation used by Pynn we can write the partial differential cross section for a system
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composed of a single atomic element as

d2σ

dΩdEf
=

1

4π

(
kf
ki

)
[σcohScoh(Q, ω) + σincSinc(Q, ω)] , (7)

where S(Q, ω) is exactly same quantity as I(Q, ε) used by Pynn to express Van Hove’s

scattering law. The subscripts coh and inc refer to the coherent and incoherent parts of the

scattering, and pertain to the collective or individual motions of the atoms, respectively,

as described on page 9 of Pynn’s primer. Whenever spatial correlation of scatterers is of

interest, however, the coherent term only needs to be considered.

The scattering function Scoh(Q, ω) contains a double sum over pairs of nuclei as shown

in Eq. 3 on page 28 of Pynn’s primer.2 Each term in this sum represents the correlation

between the position of one nucleus at a time t = 0 with that of another nucleus at an

arbitrary time t later. These correlations are important for systems in which the nuclei

are strongly coupled via some type of interaction, and less so when this coupling is weak.

In either case Scoh(Q, ω) provides a measure of the strength of this coupling, and hence

the resulting collective motions. It is therefore extremely useful, for example, in mapping

out the dispersion relations of lattice vibrations, that is how the energy h̄ω of the lattice

vibrations changes at different Q positions, in solids. For the remainder of this discussion,

we will drop the subscript coh with the understanding that we are referring to the coherent

part of the scattering function.

The scattering function S(Q, ω) can be simply related to the imaginary part of the

dynamical susceptibility according to

S(Q, ω) =
h̄

π

(
1

eh̄ω/kBT − 1
+ 1

)
χ′′(Q, ω), (8)

where kB = 1.381× 10−23 Joules/K is Boltzmann’s constant (note: h̄/kB = 11.60 K/meV is

a handy conversion factor). This is a very important equation since it shows that S(Q, ω),

which is readily obtained from the experimentally measured partial differential scattering

cross section via Eq. (7), is also related to a quantity that is easily calculated by theorists,

χ′′(Q, ω). The dynamical susceptibility is a measure of how the system responds when it

is ”wiggled”. χ′′(Q, ω) refers to the imaginary part of this quantity, which is related to

how energy is dissipated by the system. Therefore a measurement of the partial differential

scattering cross section via neutron spectroscopy allows for a direct test of theoretical mod-
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FIG. 4: The relationship between the neutron scattering cross section and the spin-spin correlation

function. The relaxation rate Γ is HWHM in energy of S(Q,ω), and is inversely proportional to

the lifetime of the excitation τ . The line-width κ is the HWHM in momentum transfer of S(Q,ω),

and is inversely proportional to the correlation length ξ.

els. By recording the scattered neutron intensity as a function of energy transfer h̄ω and

momentum transfer Q, and removing the instrumental effects, one obtains S(Q, ω), which

contains all of the dynamical information about the system.

With the exception of the neutron spin-echo (NSE) technique, all other neutron spectro-

scopic methods measure d2σ/dΩdEf using a neutron detector to count the number of neu-

trons scattered per unit time from a sample as a function of the energy transfer ∆E = h̄ω

and the momentum transfer Q. To do this requires that one knows the energy and wavevec-

tor of the neutron before (Ei,ki) and after (Ef ,kf ) it scatters from the sample. There are

many ways of doing this, and most will be illustrated by the different experiments in this

summer school. As will be seen, each method has its own particular advantages and limi-

tations, depending on the range of energy transfers (time scales) and momentum transfers

(length scales) one wishes to study.
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C. Understanding The Spin-Spin Correlation Function 〈SR(t) · SR′ (0)〉

The intensity of neutrons scattered from the magnetic moments in a solid is proportional

to the spin-spin correlation function:1

d2σ

dΩdEf
= r2

0

kf
ki
|g
2
F (Q)|2

∑
αβ

(δαβ − Q̂αQ̂β)

× 1

2πh̄

∫
dt eiωt

1

N

∑
RR′

〈
SαR(t)SβR′(0)

〉
e−iQ·(R−R

′) (9)

where r0 = −0.54 · 10−12 cm, g is the gyromagnetic ratio, F (Q) is the magnetic form-factor

andN is the number of unit cells in the solid. Basically the partial differential scattering cross

section d2σ/dΩdEf is the Fourier transform in space and time of the spin-spin correlation

function 〈SR(t) · SR′ (0)〉. Thus, neutron elastic scattering probes static ordered moments,

whereas neutron inelastic scattering probes fluctuating (dynamic) moments.

While this equation appears formidable, Fig. 4 can help shed substantial light on the

relationship between the measured magnetic neutron scattering cross section and the time-

dependent spin-spin correlation function. The spatial dependence of the spin correlations can

be determined from the Q-dependence of S(Q, ω). For example, if S(Q, ω) is Q-resolution

limited, then this would indicate that the spatial correlations are of long-range. However,

if S(Q, ω) is broader than the instrumental Q-resolution, then the correlations are short-

ranged. A similar argument can be made for linewidths, which is the peak widths observed in

energy scans. If S(Q, ω) is h̄ω-resolution limited, then this would indicate that the temporal

correlations are of long-range. However, if S(Q, ω) is broader than the instrumental h̄ω-

resolution, then the excitations are only short-lived in time.

III. TRIPLE-AXIS SPECTROSCOPY

A. Introduction to The Triple-Axis Spectrometer

The triple-axis spectrometer (TAS) is an extremely versatile instrument that is primarily

intended for the study of the collective motions of the atoms and their magnetic moments

in single crystal samples. The first TAS system was used to obtain the first experimental

demonstration of phonon and magnon dispersion curves (in aluminum and magnetite) in

the mid 1950’s.3 The instrument derives its name from the fact that the neutrons interact

12



with three crystals on their way from reactor to detector, each crystal being able to rotate

independently about a vertical axis passing through its center. This is shown schematically

in Fig. 5. The first crystal is called the monochromator, as it selects a single monochromatic

component from the white neutron beam emanating from the reactor or neutron guide. The

second crystal is the sample itself (although it may be either a single crystal or a powder).

The third crystal is called the analyzer, as it is used to analyze the energy spectrum of the

neutron beam that scatters from the sample. The last primary element of the instrument

is, of course, the neutron detector.

In a triple-axis spectrometer, the initial and final neutron energies are determined by

exploiting the process of Bragg diffraction from the monochromator and analyzer single

crystals. This is done by rotating the crystals about their respective vertical axes such that

a specific set of atomic Bragg planes, having a well-defined interplanar spacing d, makes an

angle θ, known as the Bragg angle, with respect to the initial (or scattered) beam direction.

When this is done, only neutrons with wavelengths that satisfy the Bragg condition (see

pages 9-11 of Pynn’s primer)

nλ = 2d sin θ, (10)

where n is an integer greater than zero, will Bragg scatter from each crystal and proceed

successfully to the next element of the spectrometer.

Question: Because the variable n in Bragg’s law can be any integer greater than

zero, more than one monochromatic component can be present in the neutron beam

diffracted by either monochromator or analyzer. List the possible wavelengths of

these other components. How might their presence affect the experimental data?

To remove the extra and unwanted monochromatic components from a Bragg diffracted

beam, while preserving the neutron flux at the desired fundamental (n=1) wavelength λ,

it is common practice to place a filter composed of some solid material in the path of the

beam. The choice of material depends on the primary wavelength λ. For thermal neutrons,

a special form of graphite (pure carbon) known as highly-oriented pyrolytic graphite (HOPG

or just PG) is often used. Graphite has a layered structure in which the crystalline [001]
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FIG. 5: Schematic scattering configuration for a conventional triple-axis spectrometer. It measures

a scattering event at a single value of (Q, h̄ω) at a time.

or c-axis is normal to the layers. HOPG behaves like a crystal of graphite in which the

various graphite layers have all been randomly spun about the c-axis. Therefore HOPG can

be viewed as a single-crystal along [001], and a powder along the two orthogonal directions.

It exhibits very good transmission at certain neutron energies including 13.7, 14.7, 30.5, and

41 meV. Neutrons of other energies are preferentially (though not completely) scattered out

of the beam, thereby minimizing the chance they will enter the detector and contribute to

the background.

For cold neutrons, such as those used on the SPINS spectrometer, a polycrystalline block

of beryllium (Be) or beryllium oxide (BeO) is used as a wavelength filter. The requirement

for this filter to work is that there be enough tiny crystallites to span all angular orientations,

i.e. all values of the Bragg angle θ, so that all unwanted neutrons are Bragg scattered out

of the neutron beam.
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Question: (1) Consider a white (polychromatic) beam incident on a polycrys-

talline Be filter. What happens to those neutrons with wavelengths λ > 2dmax,

where dmax = 1.98 Å is the largest interplanar d spacing available in beryllium?

What happens to those neutrons with λ ≤ 2dmax? Make a simple sketch of trans-

mission versus energy for this filter.

(2) What are the criteria for ideal materials for designing neutron low-pass filters?

As can be seen from Fig. 5, when the incident neutron beam from the reactor strikes

the monochromator, it is scattered through an angle 2θm from its initial direction. This

is commonly referred to as the monochromator scattering angle. In order for the resulting

monochromatic beam to hit the sample, it is necessary to rotate the subsequent elements

(sample, analyzer, and detector) of the spectrometer about the monochromator axis through

an angle of 2θm. The same situation applies for the sample, and the analyzer, i. e. associated

with each crystal is a Bragg angle θ, and a scattering angle 2θ. Hence each axis of the triple-

axis spectrometer is actually composed of two motors, one to control the crystal Bragg

angle θ, and the other to rotate the subsequent (downstream) elements of the instrument

by the appropriate scattering angle 2θ. While there are many different motors involved in

the operation of a triple-axis spectrometer, such as those that control mechanical slits that

limit the horizontal and vertical extent of the neutron beam, the primary instrument motors

are those that control the values of θ and 2θ for the monochromator, sample, and analyzer.

(NOTE: The convention of naming θ and 2θ comes from the fact that 2θ = 2× θ for elastic

Bragg scattering. Even though this relation no longer holds for inelastic scattering, they are

still called the same way.)

The material most commonly used as monochromator and analyzer in a TAS system is

also HOPG. Its utility lies in its very high reflectivity for neutrons over a wide range of

energy, along with its negligible incoherent scattering and adsorption cross sections, and

its low atomic number so that scattering by gamma rays is small. The (002) Bragg planes

of HOPG have an interplanar d spacing of 3.354 Å. Other materials that also find use in

triple-axis spectroscopy are silicon, germanium, and copper.
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Question: Calculate the monochromator Bragg and scattering angles required to

obtain a neutron beam having initial energies Ei = 14.7 meV, and 100 meV using

the (002) reflection of HOPG. The (220) reflection of copper has a d spacing of

1.278 Å. Would this be a better choice of monochromator in either case?

During the interaction with the sample, neutrons can lose or gain energy, and thus can

emerge with an energy Ef 6= Ei. The resulting energy transfer can be computed according

to

h̄ω = Ei − Ef =
h2

8m

(
1

d2
m sin2 θm

− 1

d2
a sin2 θa

)
, (11)

where dm and da are the d-spacings of the monochromating and analyzing crystals, respec-

tively. If the analyzer is set to select the same energy as that of the incident beam (Ei = Ef ),

then h̄ω = 0, and the scattering is said to be elastic. If not, one detects inelastic scattering

events.

Measuring the momentum transfer Q between neutron and sample is achieved by orienting

the incident and final neutron wavevectors with respect to each other to obtain the desired

vector difference (ki − kf ). Unlike the case of the monochromator and analyzer crystals,

the Bragg and scattering angles for the sample needn’t be related by a simple factor of 2.

Indeed, when measuring inelastic scattering they usually are not. Hence the notation 2θ

(which is quite common) can be misleading for the novice scatterer. With this warning in

mind, we can calculate the magnitude of the momentum transfer from the scattering triangle

diagram in Figure 3 as below.

Q =
√
k2
i + k2

f − 2kikf cos 2θ. (12)

Note that the momentum transfer does not depend on the sample Bragg angle θ, but only on

the sample scattering angle. The purpose of the Bragg angle is to allow the crystalline axes of

the sample (if it happens to be a single crystal) to be aligned in specific ways with respect to

the scattering vector Q. This allows one to probe the geometry of the dynamics in question

along different symmetry directions. The utility of the sample Bragg angle becomes moot,

however, in the case of a powder sample (composed of many tiny and randomly-oriented

single crystals).
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Question: What is the maximum momentum transfer one can obtain in the case

of elastic scattering, i.e. |ki| = |kf |? What is the minimum? Why might these

two configurations be problematic from an experimental point of view?

By stepping the analyzer Bragg angle θa, or the monochromator Bragg angle θm, by

computer in small angular increments, one can effectively scan the energy transfer h̄ω.

Generally this is done while keeping the momentum transfer Q constant, and is known as a

constant-Q scan. The complement to the constant-Q scan is the constant-E scan in which

the energy transfer is held constant while one varies the momentum transfer. These two

scans are fundamental to the triple-axis method, and are used commonly to map out the

dispersion relations for both phonons and magnons in condensed matter systems.

In the case of a constant-Q scan, one has the choice of fixing either the incident or final

energy, through fixing the Bragg angles of either the monochromator or the analyzer. As

a rule, it is best not to vary both as one needs to place a wavelength filter in the path of

either the incident beam (before the sample) or the scattered beam (after the sample) in

order to remove the higher order harmonic content of the Bragg diffracted neutron beam

(remember the effect of the integer n in Bragg’s law). If the analyzer angle θa is fixed and one

varies θm, the result is an Ef -fixed configuration. Doing the opposite results in an Ei-fixed

configuration. Both methods yield data that contain the same physics. Deciding which to

choose depends largely on the specific problem being studied.

B. The NCNR Spin Polarized Inelastic Neutron Scattering (SPINS) Spectrometer

SPINS is a cold-neutron triple-axis spectrometer. Fig. 6 show an overview of the SPINS

spectrometer and the schematics of the neutron path. Its incident energy range can be

changed between 2.4 and 14 meV. The monochromator of SPINS consists of 5 blades of

PG crystals can vertically focus incoming neutron flux to a sample with a size smaller than

the height of the beam. On the other hand, the analyzer consists of 11 blades also of PG

crystals that are standing vertically in a row and can individually be rotated. Taking advan-

tage of this multi-crystal analyzer, SPINS is designed to operate in various configurations

including (1) conventional triple-axis mode, (2) horizontally focusing analyzer mode, and

(3) multiplexing mode. Since many components of the SPINS instrument can be changed as
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FIG. 6: Overview of the SPINS spectrometer. The arrows show the path of the neutron beam

during a scattering experiment. M, S, A, and D stand for monochromator, sample, analyzer, and

detector.

necessary, other modes not described here are also possible. For instance, polarized-neutron

scattering mode is also optionally available.

(1) Conventional triple-axis mode has been discussed previously, and shown in Fig. 5.

At SPINS, it can be achieved by using just a few analyzer blades in the middle, typically

three, which are aligned flatly with respect to each other. A single tube detector is used

with necessary collimators through the beam path.

(2) Horizontally focusing analyzer mode is schematically shown in Figure 7. The basic

idea of this mode is to focus scattered neutrons over a wide solid angle into a single tube

detector. It has an effect of relaxing momentum resolution while maintaining energy reso-

lution. As a result, detected neutron intensity will increase roughly proportionally to the

number of the focusing blades. It is very efficient in data collection rate when the features

to be measured are broad in momentum space. Ideally the blades need to be positioned on

an arc of a circle encompassing the positions of the sample and the detector, so that Bragg

angles for all the blades are equal. In practice, one can achieve an approximate focusing

18



FIG. 7: Schematic scattering configuration of a horizontally focusing analyzer mode utilizing a

multi-blade analyzer for a triple-axis spectrometer. It collects intensity from a broad range of

momentum transfer simultaneously while maintaining a good energy resolution.

FIG. 8: Schematic scattering configuration of a multiplexing detection system utilizing a Position-

Sensitive-Det spectrometer. It simultaneously measures scattering events at different values of

(Q, h̄ω).
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TABLE I: Comparison chart of neutron scattering spectrometers at NCNR in terms of the needs

for this particular experiment.

Issues SPINS BT7/9 DCS HFBS NSE FANS

|ΘCW | ≈ 88 K corresponds to J ≈ 1 meV © × © × × ×

S(Q,ω) at well-defined Q(hkl) space © © 4 × × ×

diffraction can also be done with good resolution © 4 × × × ×

condition by placing the row of the blades tangential to the relevant arc, and maintain a con-

stant incident angle of neutrons for each blade. The momentum resolution can be adjusted

by appropriately selecting the number of focusing blades.

(3) In multiplexing modes, a wide area of the position sensitive detector (PSD) is used

together with the multi-crystal analyzer. In the most typical setup, schematically shown in

Figure 8, the 11 analyzer blades are aligned in such a way to scatter neutrons into equally-

spaced columns on the PSD. If the blade arrangement is nearly flat as in Figure 8, each

blade will have a different Bragg angle and subsequently a different energy. Therefore,

signal from each blade will correspond to both different momentum and different energy

transfers. The positional sensitivity of the PSD can efficiently discriminate this information.

This mode is very efficient in data collection when momentum dependence of excitation is

two-dimensional or less. Typically a calibration run should be performed for a given setup

using an incoherent scatterer, and used as a reference for energy and intensity calibrations.

Various creative combinations of the analyzer-PSD setups are possible depending on the

necessity of the experiment.

At NCNR there are several neutron scattering spectrometers with diverse experimental

capabilities that are available to internal and external users. Whenever neutron scattering

experiment is planned, it is very important to consider various aspects of experimental needs

and select the best suited instrument. Table I summarizes the most important reasons why

SPINS, the cold neutron triple-axis spectrometer, is the best instrument for this particular

study in comparison with other instruments. An additional advantage of using SPINS

is that various experiments requiring different experimental configurations, such as elastic

versus inelastic, high versus low Q resolution, and high versus low energy resolution, can be

performed in series on the same instrument.
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IV. DISPERSIVE MAGNETIC EXCITATIONS IN ADDITIONALLY FRUS-

TRATED TRIANGULAR LATTICE DIMER COMPOUND BA3MN2O8

A. Geometrically frustrated magnets and quantum critical phenomena

In certain magnetic materials, magnetic order would not appear even when the system is

cooled down much below the temperature comparable to the major exchange strength. In

some cases crystal structure is responsible for the suppression of magnetic order, which is

often called geometrical frustration. As the simplest example, consider a case where antifer-

romagnetic spins are placed on an equilateral triangle as in Figure 9, and assume only two

spin orientations are allowed, either up or down. After placing the first two spins antiparal-

lel to each other, the third spin cannot simultaneously satisfy antiferromagnetic correlations

with the two other spins. It is often said that the third spin is frustrated. In fact, it is not

just the third spin but the three-spin system that is frustrated, and there are more than

one lowest energy state possible for the given system. Such topologically induced multiply

degenerate ground states that prevent the system from ordering is a characteristic of geo-

metrically frustrated magnets. Most geometrically frustrated magnets will eventually order

when the temperature is lowered enough. Another approach to induce the long range mag-

netic order in frustrated systems is via the use of an external agent such as magnetic field.4

If the system has singlet ground state, as in s=1/2 spin system, then it also provides good

opportunity to explore the novel quantum behavior in applied magnetic field. Low temper-

ature quantum behavior usually lead to quantum critical point (QCP) which separates the

paramgentic state from the magnetically ordered state. New electronic phases of matter

have been predicted to occur in the vicinity of a QCP by two-dimensional theories, and

explanations based on these ideas have been proposed for significant unsolved problems in

condensed matter physics, such as non-Fermi-liquid behavior and high temperature super-

conductivity. But the real materials to which these ideas have been applied are usually the

three-dimensional systems with finite electronic coupling between their component layers.

The observation of two-dimensional QCP in three-dimensional bulk materials has been very

limited. In addition to that, the driving mechanism behind the dimensionality reduction

has been a subject of debate in these systems. In order to understand the mechanism be-

hind QCP in geometrically frustrated systems, one needs to identify the exchange paths and
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FIG. 9: (a) Three spins on a triangle cannot simultaneously satisfy antiferromagnetic correlations

with all of their neighbors. (b) Spinel B sites form a corner-shared network of tetrahedra, which

consists of many edge-shared triangles. It is often called a pyrochlore lattice.

their strength between neighboring magnetic ions. Numerical modeling, using the appro-

priate Hamiltonian, of the resulting spin dispersion curve leads to the identification of the

strength of the tuning parameter, thus provide important imformation about the underlying

mechanism.6

B. Singlet-triplet dispersion in triangular lattice dimer compounds

Dimer compounds, for example Ba3Mn2O8, provide an ideal platform to study the physics

of quantum phase transition in geometrically frustrated systems, using external magentic

field as the tuning parameter.5 In dimer compounds, the application of external magnetic

field closes the energy gap between singlet ground state and the lowest excited level of triplet

state via Zeeman splitting of triplet. Such systems thus provide an elegant realization of a

lattice of bosons in which the external magnetic field plays the role of the chemical potential

and the inter-dimer coupling determines the energy of the delocalized triplets. Under the

right set of conditions, these delocalized triplets crystallize or condense at low temperatures;

thus paves the way for long range magnetic order via second order phase transition. Since

the magnetic field acts as the tuning parameter which separates the paramagnetic state
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from the ordered state at high magnetic field(s), QCP(s) can be identified in temparature-

field phase diagram. In Ba3Mn2O8, two sequential magnetically ordered phases, i.e. four

QCPs are observed as a function of applied magnetic field at 9 T, 26 T, 32.3 T and 48 T.7

Most importantly, the nature of the high field phases depends upon the exchange constants

between neighboring ions at zero field. Therefore, strong understanding of the exchange

paths and their strengths at zero magnetic field is necessary to understand the underlying

mechanism behind the QCP as well as the role of geometrical frustration.

Ba3Mn2O8 is a particularly promising candidate for the detailed study of the magnetic

field dependent QCP.7 Ba3Mn2O8 is a S = 1 coupled spin dimer antiferromagnetic system

which consists of Ba2+ cations and MnO4
3− anions. It crystallizes in a trigonal structure with

the space group R3m. The lattice constants are a = 5.711 AA and c = 21.444 AA at room

temperature. Since the Mn5+ ion, in this compound, is tetrahedrally surrounded by four

O2− ions, the orbital ground state is nondegenerate. Therefore the magnetic moment is ap-

proximately given by spin only. Figure 10 shows the arrangement of Mn5+ ions and possible

dimer, J0, and inter-dimer, J i, exchange paths. Inelastic neutron scattering measurements

on powder sample yielded three independent exchange constants through comparison to a

spherically averaged scattering intensity. Recent neutron scattering measurements on single

crystal sample revealed that the next-nearest-neighbor (NNN) interaction, J4, plays a sig-

nificant role in the propagation of triplet excitations. As mentioned earlier, since the critical

field(s) depends on the exchange path and the strength of the interactions, the excahnge

constants can be determined by fitting the dispersion bandwidths at the measured critical

fields. While the complete understanding requires the detailed measurements and analysis

at different fields, in this experiment we will primarily focus on measuring and analyzing

the exchange interactions of Mn-ions of Ba3Mn2O8 in zero field. In doing so, we will learn

(1) how cold triple-axis spectrometers can be the most effective tool to study the low energy

magnetic excitations, (2) how the magnetic excitation evolve as a function of wave-vector i.e.

the dispersive bahavior of low energy spin waves, and (3) how to correlate the extracted in-

formation, using the numerical modeling of the experimental data, to the underlying physics

of the system.
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FIG. 10: Crystal structure of Ba3Mn2O8. Oxygen atoms are not shown for clarity. Grey

dashed lines indicate chemical unit cell. (a) Polyhedra presentation of structure. Light green

and dark green polyhedra around Ba sites represent the two types of Ba coordination that alter-

nate along the c axis. Red tetrahedra illustrates the Mn5+ coordination. (b) Crystal structure

of Ba3Mn2O8(caxisvertical)showingMn5+ dimers (red dimer bonds along c-axis). Oxygen sites

(small blue sphere) involved in coordination of two dimers are shown to illustrate interdimer con-

nectivity and tetrahedral coordination of the Mn5+.

Question: Consider the case of a triangular lattice with isotropic Heisenberg

spins. If nearest neighbor exchange is antiferromagnetic, is geometrical frustration

expected or not?

V. EXPERIMENT AND ANALYSIS

A. Experimental Planning and Setup

In order to determine the exchange constants, we perform inelastic neutron scattering

measurements at different wave vectors in the Brillouin zone. Neutron scattering data are
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then fitted with a statistical function, such as a Gaussian lineshape, to determine the mag-

netic excitation energy, E, at a particular wave vector, Q. The plot of E vs. Q provides

us information about the dispersive nature of magnetic excitations. The magnetic disper-

sion curve is numerically fitted with the appropriate Hamiltonian to obtain the exchange

constants of the system.

While the energy of the analyzer may be arbitrarily chosen for triple-axis spectrometers,

the typical energy of the analyzer at SPINS is either 5.0 meV or 3.7 meV. This is mostly

because these numbers are just below the cut-off energies of low-pass Be and BeO filters,

respectively. One may access wider momentum space with reasonable intensity with Ef =

5.0 meV, while better energy resolution is obtained with Ef = 3.7 meV. The low-pass

filters are inserted between the sample and the analyzer, and will prevent scattered high-

energy neutrons from entering analyzer-detector assembly and leaving spurious experimental

artifacts. For elastic scattering an additional low-pass filter is usually inserted between the

monochromator and the sample.

Single crystal samples of Ba3Mn2O8 were oriented in the hk0 scattering plane, where

the a and b axes are located in the horizontal scattering plane. An alternative orientation

is the hhl scattering geometry, where one of the two axes are rotated out of the horizon-

tal plane by 60o while the other remains. In the case of inelastic scattering, five pieces of

crystals were co-aligned and mounted together to enhance scattering intensity. The samples

are then sealed in a He-filled aluminum can and cooled down by a liquid-He filled cryostat.

The instrument will be operated in fixed-Ef mode with Ef = 5.0 meV. The instrumental

configuration for inelastic measurements following the neutron path downstream is: neutron

guide–monochromator–80’ collimator–sample–Be filter–radial collimator–11 blade horizon-

tally focusing analyzer–detector (G–80’–Be–RC–11HFA–D in short). The energy resolution

for the above configuration is about 0.3 meV.

B. Data and analysis

Figure 11 shows the energy dependence of magnetic inelastic neutron scattering intensity

measured at various Q at T = 1.7 K. The experimental data show a single resolution limited

spin wave mode propagating along the (hh3/2) direction between energy transfer E of 1 to

3 meV. Similar bahvior of spin wave propagation is observed in the measurements at several
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FIG. 11: Constant Q scans in the (hhl) and (hk0) planes. Solid lines are the Gaussian fits. Data

are offset vertically for presentation.

high symmetry locations in (hk0) scattering plane also, perhaps with weaker intensity. In

order to understand the spin wave dispersion and quantitatively determine the wave-vector

dependent scattering intensity, individual constant Q scans are fitted to an inelastic Gaussian

lineshape. The peak positions along several high-symmetry directions are plotted in Figure

12 and 13. We see that the singlet-triplet excitation is fairly dispersive along the (00l)

direction but almost no dispersion along l for 0.3≤h≤0.7 is observed.

Previously, three nearest neighbor exchange constants J i, i=0,1,2, were determined from

the powder measurements of Ba3Mn2O8. However, the lack of dispersion along the l direction

near the zone center cannot be explained by nearest neighbor exchange constants only. That

means, an additional interlayer NNN exchange constant must be competing against the

nearest neighbor interactions. Therefore, we must include the NNN interbilayer interaction,

J4, in the Heisenberg Hamiltonian. Please refer to the reference by M. Stone et.al. for the

Heisenberg Hamiltonian equations. A simultaneous fit of the peak positions of the constant

Q scans in the (hhl) scattering plane yields J0 = 1.642, J1 = -0.118, (J2 - J3) = 0.1136 and

J4 = -0.037 meV. J2 and J3 represent interdimer exchange between the same spin dimers.
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FIG. 12: (a)-(d) T = 1.7 K scattering intensity of Ba3Mn2O8 vs E and Q. Figure is interpolated

from constant Q scans in the (hhl) plane. White circles are peak positions from Gaussian fits. Solid

line is the fitted dispersion. (e)-(h) Integrated scattering intensity from Gaussian fits to constant

Q scans. Solid line is the fitted scattering intensity. (1) Path through the (hhl) plane shown in

(a)-(h). Contour lines are the fitted dispersion with dark (light) lines representing smaller (larger)

energy transfers shown at 0.2 meV intervals.

The phase shift for triplets propagating between dimers via J2 or J3 is due to the opposite

symmetries of the singlet and triplet state under a permutation of the two sites that form

the dimer. The corresponding dispersion curves shown in Fig. 12 and 13 agree very well

with the measurements. The dispersion along (1/2 1/2 l) is also fitted in Fig. 13 for J4 = 0

(dashed line). We clearly see that the calculated curve does not fit the experimental data.

Hence, additional NNN exchange (J4) is required to describe the measured dispersion. The

additional interlayer exchange interaction also indicates that the Mn5+ sites are additionally

frustrated.

During the Summer School experiments, students will be provided the inelastic neutron

scattering data of Ba3Mn2O8 in (hhl) and (hk0) scattering planes. We will analyze the

experimental data using DAVE software and estimate the variuos exchange constants. In
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FIG. 13: (a) Dispersion and (b) integrated intensity of Ba3Mn2O8 determined from Gaussian fits

to energy scans. Solid lines in (a) are fits to the dispersion as discussed in the text. Dashed lines

in (a) is the fitted dispersion for (1/2 1/2 l). Solid lines in (b) are fits to the scattering intensity.

this process, we will learn not only the magnetic properties of geometrically frustrated

quantum magnets but also gain experinece in plotting and modeling the spin dispersion

behavior of the system.

VI. SUMMARY

Triple-axis spectroscopy is one of the most widely used neutron scattering techniques for

studying lattice and magnetic dynamics in condensed matter. Its strength is in its capa-

bility to measure S(Q, ω) at desired momentum and energy transfers with great flexibility.

In this experiment, we have studied the geometrically frustrated antiferromagnetic dimer

Ba3Mn2O8. Through single crystal inelastic neutron scattering measurements of Ba3Mn2O8,

it was shown that the NNN exchange interactions are significant in describing the system.The

antiferromagnetic interactions within the bilayer lead to a geometrically frustrated system.

The refined exchange constants provide a zero-field confirmation of the high magnetic field

QCPs. We also learned that the use of cold triple axis spectrometr, SPINS, is vital in un-
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derstanding the low energy magnetic excitations in a range of magnetic systems, such as

geomterically frustrated magnets or low dimensional quantum systems.
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