

Modulation Doping of Ferromagnetism in Manganite Superlattices

Tiffany S. Santos

Center for Nanoscale Materials Argonne National Laboratory

> NIST Summer School May 14, 2010

Support: DOE-BES Contract # DE-AC02-06CH11357

Ozone-MBE Team

Tiffany Santos Anand Bhattacharya Brittany Nelson-Cheeseman Steve May (now at Drexel U.)

LaMnO₃/SrMnO₃ superlattice STEM: Amish Shah, J.-M. Zuo, UIUC

nano.anl.gov

Talk Outline

Tuning across the F/AF phase transition at x=0.5 by digital synthesis

Delta-doping of ferromagnetism into the antiferromagnetic state

O. Chmaissem, et al., PRB 2003

Manganites (La_{1-x}Sr_xMnO₃): Magnetic Ordering

- Exhibit wide variety of ordering phenomena (magnetic, orbital)
- Magnetic ordering related to Mn valence state

Competition between double exchange and superexchange

Double exchange

Superexchange

Ferromagnetic, metallic

C. Zener, PRB (1951)

Antiferromagnetic, insulating

J. B. Goodenough, Phys. Rev. (1955)

\rightarrow Determines the magnetic properties across the phase diagram

F-AF Phase Transition at x ~ 0.5

Previous x=0.5 studies: Koida et al, PRB (2002); P. K. Muduli et al, JPCM (2007); M. Izumi et al, PRB (2000); Y. Konishi et al, J. Phys. Soc. Jpn. (1999)

Order vs Disorder of Sr/La on A-sites

VS

Disordered La/Sr Random Alloy La_{1-x}Sr_xMnO₃

Ordered La/Sr SMO₁ / LMO₁

Why study order ?

$(R_{0.7}M_{0.3})MnO_3$: Suppressed T_c with A-site Disorder

Rodriguez-Martinez and Attfield, PRB (1996)

Ln_{0.5}Ba_{0.5}MnO₃ : New Ground States with Ordered Analogs

A-site disorder drastically changes the ground state

Ozone-Assisted Molecular Beam Epitaxy

This is a user facility ! nano.anl.gov

- Pure ozone
- 10 differentially-pumped K-cells
- 3 e-beam sources
- *in situ* RHEED
- Rate measured by QCM
- Composition calibrated by RBS
- Atomic absorption in progress

Tiffany Santos, 2010 NIST Summer School

Ozone-Assisted Molecular Beam Epitaxy

LaMnO₃, SrMnO₃ on SrTiO₃

Digital Synthesis

total thickness ~ 30 nm

compare with alloys of equivalent composition...

Reflection High Energy Electron Diffraction

Smooth Surfaces: AFM and STM of x=0.50 SL

In collaboration with Matthias Bode, CNM

X-Ray Reflectivity: Simulation

Tiffany Santos, 2010 NIST Summer School

Single Layer Control: X-Ray Reflectivity

SL peaks not possible with layer roughness of a single unit cell

X-ray Diffraction

(002) peak of the SrMnO₃/LaMnO₃ superlattices

Tiffany Santos, 2010 NIST Summer School

Enhanced Metallicity with A-site Order

Metal-like behavior near x=0.5

F state

- orbital disorder
- double exchange in 3D

- A-type AF order
- x²-y² lie in MnO₂ sheets
- F double exchange in plane
- AF superexchange along c

A-type AF order: Neutron Diffraction, x = 0.55

- Structurally forbidden (0 0 ½) diffraction peak below T_N
- $\hfill \ensuremath{\bullet}$ coherence length ξ ~ film thickness
- T_N enhanced from bulk T_N=220 K

Measured at HFIR, ORNL Collaboration with Lee Robertson, Jerel Zarestky

A-type AF order, x=0.50

- T_N greatly increased over bulk T_N
- No F phase at high T

Strain, rather than A-site order, leads to enhanced T_N:

compression of c-axis \rightarrow stronger superexchange

^{¹La_{1-x}Sr_xMnO₃ on the Verge of Ferromagnetism: x=0.44, 0.47}

• orbital disorder

- F double exchange in plane
- AF superexchange along *c*

Adding mobile carriers to AF

 \rightarrow Canting due to double exch.

(single orbital model by de Gennes,Phys. Rev. 1960;degenerate orbital model byvan der Brink & Khomskii, PRL '99)

This study: The transition from an <u>anisotropic AF</u> to an <u>isotropic F</u> ?

x = 0.44 : Canted AF ? Modulated Behavior ?

Compare x=0.44 SL and alloy

- Alloy has higher moment than SL, but still < $(4 x) \mu_B$
- Canted ?

Polarized Neutron Reflectometry

- Study magnetic depth profiles with sub-nm resolution
- Sensitive to the in-plane component of magnetization
- Measurement at NIST Center for Neutron Research
 - NG1 and AND/R, Brian Kirby and Brian Maranville
 - Suzanne te Velthuis, Argonne

x=0.44 Alloy: Polarized Neutron Reflectivity

Alloy has no Bragg peak \rightarrow no modulation

PNR: Modulated Moment in x=0.44 SL

commensurate with SL structure

Delta-Doping of Ferromagnetism

- Inserting a single layer of electrons enhances double-exchange along the caxis → canting → higher moment
- Tuning the strength of the ferromagnetic exchange interactions
- Locally change the property of the material, without introducing *disorder* or *frustration*

Izumi, Tokura, et al PRB '99,'00

What is the magnitude of the induced moment?
How far does the delta-doped charge extend?
Can we design a modulated profile with a different periodicity?

Tiffany Santos, 2010 NIST Summer School

1

x=0.47 superlattice On the verge of ferromagnetism

x = 0.47 superlattice: SL x 4 / L / SL x 5 X-ray reflectivity

x = 0.47 superlattice - X-Ray Diffraction

X = 0.47 SL - Magnetization & Resistivity

PNR: x = 0.47 SL - Modulation here too!

Tiffany Santos, 2010 NIST Summer School

La_{1-x}Sr_xMnO₃ Ordered Analogs

Conclusions

- Tuning across F-AF phase boundary using digital synthesis
- Enhanced T_N over bulk La_{1-x}Sr_xMnO₃, measured by neutron diffraction
- Canted, modulated magnetic profile revealed by PNR
 - Delta-doping of ferromagnetism *without disorder*
 - Solved the magnetic structure:
 - Magnitude of the induced moment
 - Length scale for spreading of charge

