Determining the Structure of Bio-membranes by Neutron Diffraction and Reflectometry

Ella Mihailescu (UC Irvine)

Cell membranes

Lipid bilayers

A neutron diffractometer/reflectometer

At the NIST Center for Neutron Research (NCNR) monocromator slit #1 $\lambda_n = 5 \text{ Å}$ $\Delta \tilde{\lambda} / \lambda = 1\%$

The Advanced Neutron Diffractometer/Refletometer

Reactor Z sample $\mathbf{Q}_{\mathbf{z}}$ slit #2 slit #3 slit #4 detector

Schematic of the AND/R

Scattering Lengths Why neutrons when we have X-rays?

Single bilayer versus multilayers for the study of membrane structure

Single thethered membrane

-membrane fully hydrated in a 'wet cell'

Oriented lipid stacks

-dry membranes hydrated from the vapor phase of a salt solution

Reflectometry versus Diffraction. What's the difference?...

Momentum transfer and planar geometry

$$Q = \frac{4\pi}{\lambda} \sin(\frac{\Delta}{2})$$

Momentum transfer and planar geometry

Momentum transfer components

Basic parameters for general case, including $\alpha_i = 90^\circ$:

 2θ here not to be confused with scattering angle

$$egin{aligned} q_{\mathrm{x}} &= rac{2\pi}{\lambda}(\coslpha_{\mathrm{f}}\cos(2 heta) - \coslpha_{\mathrm{i}})\ q_{\mathrm{y}} &= rac{2\pi}{\lambda}\coslpha_{\mathrm{f}}\sin(2 heta) & q_{\mathrm{f}}\ q_{\mathrm{z}} &= rac{2\pi}{\lambda}(\sinlpha_{\mathrm{i}} + \sinlpha_{\mathrm{f}}) & \mathrm{sat}\ ab \end{aligned}$$

 $q_r = (q_x^2 + q_y^2)^{1/2}$ For cylindrical geome

For cylindrical geometry, sample invariant on rotation about Z.

Diffraction from lipid multilayers to determine the membrane structure

The application of the convolution theorem to lipid multilayer diffraction

Row of atoms: No atomic internal structure can be "seen" by the neutron

Stack of lipid bilayers: The internal bilayer structure can be resolved by the neutron

 $D(z) = \Sigma \delta(z-nd) \otimes \rho_{unit cell}(z) \xrightarrow{Fourier transform} s(q) = F(\Sigma \delta(z-nd)) \cdot F(\rho_{unit cell})$

The diffraction peak intensities are modulated by the density distribution within the unit cell

The phase problem

For a centro-symmetric system $(\rho(z)=\rho(-z))$:

$$s(Q_z) = \int_{-d/2}^{d/2} \cos(izQ_z) \rho(z) dz + i \int_{-d/2}^{d/2} \sin(izQ_z) \rho(z) dz \longrightarrow H \rightarrow D \text{ contrast variations at known positions}} We determine phase of s(Q_z) by$$

• There are only two possibilities: -1 and +1, corresponding to cos(0) and cos (180).

> Diffraction: signal sampled at $Q_z^n \rightarrow \rho_{unit cell}(z) =$ Fourier synthesis (+/ $\sqrt{I(n)}$)

Using contrast to determine structural details from diffraction data

Examples of neutron diffraction experiments Polyunsaturated lipids important for the function of brain receptors.

Rhodopsin/DHA

A – bilayer w. cholesterol B0 - DHA chain, no cholesterol B1 – DHA chain w. cholesterol C0 – SA chain, no cholesterol C1 – SA chain w. cholesterol D – Cholesterol A-ring E - Cholesterol CH3-tail F- water

Designing reflectometry experiments

- Find an appropriate model to describe the layered molecular structure in terms of neutron Scattering Length Density distribution, in real space
- Fourier transform the model
- Fit the model to the data (Reflectivity vs. Qz) to find the SLD

Determining the SLD profile of the membrane

Summary

• To determine the 'in-depth' molecular architecture in model membranes one can use:

- reflectometry experiments on single supported membranes

- membrane fully hydrated
- > possibility of studying incorporated proteins with large extra-cellular domains
- ➤ requires an appropriate model for the molecular modeling

- diffraction experiments on multilayers hydrated from vapor phase

- higher structural resolution
- direct determination of the structure from the Bragg intensities
- membrane only partially hydrated (small inter-membrane space)

Acknowledgements

UNIVERSITY of CALIFORNIA

National Institute of Neurological Disorders and Stroke

National Institutes of Health

People: Dr. Frank Heinrich (CMU) Prof. David Worcester (U Mo) Dr. Chuck Majkrzak (NCNR) Dr. Joe Dura (NCNR) Dr. Klaus Gawrisch (NIAAA-NIH) Drs. Kenton Swartz and Dmitriy Krepkiy (NINDS-NIH)