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1 Introduction

Heat has a profound effect on biological systems, especially cancer [1]. However, the widespread
clinical application of thermal therapy [2–5] for cancer has yet to be realized despite the knowledge
of its biological effectiveness, including an understanding of many of the molecular and physiologic
mechanisms that give rise to its tumoricidal effects [6, 7].

Magnetic nanoparticles, offer the potential to deliver site-selective, and even cell-specific, heat to
the local or microscopic environment of a tumor [3,8]. Because the magnetic nanoparticle can also
be a contrast agent for magnetic imaging [9–11] or can be labeled with an imaging ligand, there
exists the possibility to quantify the deposited heat dose to the tumor [3]. Correlating heat dose
with tissue temperature rise and therapeutic outcome offers the tools clinicians require to develop
and use prescriptive thermal treatment plans for their patients.

When exposed to an alternating magnetic field (AMF), magnetic materials generate heat via four
possible loss mechanisms: (1) hysteresis, (2) eddy current, (3) Neél paramagnetic switching, and (4)
friction from Brownian rotation [12]. It is quite possible that all four mechanisms may contribute
to the total heat generated by a particular magnetic sample in an AMF, but it is expected that
only one or two of the mechanisms will dominate. This is determined by the properties of the
magnetic material, its environment (e.g. temperature), and the magnetic field. For example, the
material often chosen for biomedical applications is magnetite, Fe3O4, because it exhibits a lower
toxicity than other magnetic materials while still possessing useful magnetic properties [13, 14].
For samples of this resistive oxide with dimension � 1 µm that are exposed to an AMF in the
intermediate radiofrequency region ( f ∼ 105 Hz), the heat generated by eddy current losses is likely
negligible; instead, the dominant sources of heat are expected to be magnetodynamic (hysteresis,
Neél switching, and frictional contributions) [15].

Successful application of this technology requires synthesis of stable colloidal suspensions of mag-
netite nanoparticles in biocompatible fluids (water or saline solution) that maintain their stability
in biological media such as blood or plasma [16–19]. The particles must also produce a predictable
and sufficient amount of heat, or specific absorption rate (SAR) measured in W g−1, at modest
particle concentrations (in order to limit toxicity) when exposed to AMF amplitudes that can
be applied safely to large regions of tissue [20]. Thus, the surface chemistry, size, and magnetic
properties of the particles must be engineered to meet demanding, even competing, performance
criteria.

The process of engineering such particles requires measurement techniques that allow all relevant
properties of the particles to be probed. Different preparation techniques can potentially produce
materials with differing structure and behaviors on the nanometer length scale which may be crucial
to understanding the differences seen in AMF response and heating rates.

Here we will study dextran coated magnetite particles which have previously been studied [21–23] in
H2O and D2O. The expectation had been that the scattering in D2O would be essentially similar
to that in H2O but with lowered intensity as the scattering length density of D2O is closer to
Fe3O4 than that of H2O, allowing determination of the core-shell structure of the coated particles.
The results (Figure 1), however, were rather different and the interpretation was that D2O and
the nanoparticle core were well matched in scattering and hence that the residual scattering was
either from the dextran shell or internal magnetic structure in the nanoparticle. This interpretation
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(a) (b)

Figure 1: (a) SANS results for nanoparticles in H2O (red symbols) and D2O (blue symbols); and
(b) artists impression of the proposed core-shell structure

makes use of the fact that whilst the nuclear scattering had been removed by contrast matching,
the magnetic scattering had not. The data fitted best with a description of the magnetic structure
of the core consisting of parallelepipeds of magnetite packed together. This matched with X-ray
diffraction data and information about the preparation of the particles.

However, in order to determine with certainty that the scattering from the nanoparticles in D2O is
indeed from the magnetic structure of the nanoparticle cores, we need a technique that can separate
the nuclear and magnetic contributions to the scattering. Hence, we will employ polarized beam
small angle neutron scattering to examine this system and determine the origin of the scattering
observed in D2O.

2 Why use SANS?

Generally, static light scattering and small angle X-ray scattering (SAXS) provide the same informa-
tion about the sample as neutron scattering i.e measurement of macroscopic scattering cross-section
dΣ/dΩ(q). The contrast in light scattering arises from the difference in the light’s refractive index
between the particle and water. The wavelength of light limits q < 0.002 Å−1 and thus the size
range probe to >∼3000Å. The contrast in X-ray scattering arises from the variation in electron
density within the sample. However, this does not allow for good contrast between elements that
are close in the periodic table and with many samples X-rays (particularly at synchrotron sources)
can cause damage to the sample as a result of the large amount of energy imparted.

In the case of SANS the contrast arises from variations in the density and chemical composition
within the sample. This allows for isotopic substitution to alter the scattering - a powerful technique
known as “contrast variation”. Additionally, neutrons are scattered by the magnetic moments
of atoms within a material and so can determine both the chemical and magnetic structure of
materials. Indeed, by using polarized neutrons (as you will learn here) it is possible to separate the
two and determine them independently.

SANS is therefore an ideal probe for the structure of these magnetic nanoparticle systems since
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Figure 2: Schematic diagram of the components of the NCNR’s 30-m SANS instruments.

we can measure on the necessary length scales, we can use contrast variation to examine both the
magnetite core and the dextran shell, and we can examine the magnetic structure of the magnetite
core.

3 Objectives of the Experiment

Obtain the nuclear and magnetic scattering cross sections By using a polarized neutron
beam, 3He analysis of the scattered neutrons and polarization correction data will be obtained
that can then be processed to obtain the different components of the total scattering cross
section.

Determine the magnetic structure of the nanoparticles The processed data will be ana-
lyzed by fitting model scattering functions to determine the details of the magnetic structure
of the nanoparticles.

4 The SANS Instrument

Fundamentally, the SANS experiment consists of measuring the number of neutrons scattered per
incoming neutron as a function of scattering angle. Since the size probed is inversely proportional
to angle, to examine larger objects we need to measure scattering at smaller angles. In the case of
a “pinhole” SANS instrument (such as the NG3 beamline at the NCNR) this is achieved by moving
a 2 dimensional detector relative to the sample such that a detector element subtends a smaller
angle the further the detector is from the sample.

Figure 2 shows a schematic of the 30 m NG3 SANS beamline at the NCNR without any of the
polarized beam components.

In the case of an non-polarized beam experiment, the intensity of scattering on the detector after
background correction in the SANS experiment is given by
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Imeas = φAdT (
dΣ

dΩ
)∆Ωεt (1)

where

φ is the number of neutrons per second per unit area incident on the sample

A is the sample area

d is the sample thickness

T is the sample transmission

∆Ω is the solid angle over which scattered neutrons are accepted by the analyzer

ε is the detector efficiency

t is the counting time

The aim of a SANS experiment is to obtain the differential macroscopic scattering cross section
dΣ
dΩ from Imeas. Matters are complicated when polarization of the incoming beam and polarization
analysis of the scattered neutrons are included, but the fundamental aim remains. How we go
about the process of extracting the cross section is described later, but first we need to decide how
to prepare our samples for the measurement.

5 Planning the Experiment

Given the stated objectives of the experiment and knowledge of the instrument, how do we go
about preparing for the experiment to maximize our chances of success? Here we discuss some of
the issues that bear on this question.

5.1 Scattering Contrast

In order for there to be small-angle scattering, there must be scattering contrast between, in this
case, the nanoparticle and the water. The scattering is proportional to the scattering contrast, ∆ρ,
squared where

∆ρ = ρnp − ρwater (2)

and ρnp and ρwater are the scattering length densities (SLD) of the nanoparticle and the water,
respectively. Recall that SLD is defined as

ρ =
1

V

N∑
i

bi (3)
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where V is the volume containing n atoms, and bi is the (bound coherent) scattering length of the
ith atom in the volume V. V is usually the molecular or molar volume for a homogenous phase in
the system of interest.

Neutrons are scattered either through interaction with the nucleus (nuclear scattering) or through
interaction between unpaired electrons (and hence the resultant magnetic moment) with the mag-
netic moment of the neutron (magnetic scattering). Hence a magnetic material such as magnetite
will have both a nuclear scattering length density and a magnetic scattering length density and
will display both a nuclear and magnetic contrast.

The SLDs for the phases in the present case, nanoparicle and water, can be calculated from the
above formula, using a table of the scattering lengths (such as Sears,1992 [24]) for the elements, or
can be calculated using the interactive SLD Calculator available at the NCNR’s Web pages [25].
The SLDs for the components in this experiment are given below in Table 1.

Material Chemical Formula Mass Density (g cm−3) SLDn (Å−2) SLDm (Å−2)

Iron Oxide Fe3O4 5.15 6.91×10−6 1.46×10−6

Dextran H(C6H10O5) nOH 1.54 1.8×10−6 0

Light Water H2O 1.0 -0.52×10−6 0

Heavy Water D2O 1.0 6.32×10−6 0

Table 1: The scattering length densities for Iron Oxide, dextran, heavy and light water

5.2 Sample Thickness

Given the calculated sample contrast, how thick should the sample be? Recall that the scattered
intensity is proportional to the product of the sample thickness, ds and the sample transmission,
T. It can be shown that the transmission, which is the ratio of the transmitted beam intensity to
the incident beam intensity, is given by

T = e−Σtds (4)

where Σt = Σc+Σi+Σa, i.e. the sum of the coherent, incoherent and absorption macroscopic cross
sections. The absorption cross section, Σa, can be accurately calculated from tabulated absorption
cross sections of the elements (and isotopes) if the mass density and chemical composition of the
sample are known. The incoherent cross section, Σi, can be estimated from the cross section tables
for the elements as well, but not as accurately as it depends on atomic motions and is therefore
temperature dependent. The coherent cross section, Σc, can also only be estimated since it depends
on the details of both the structure and the correlated motions of the atoms in the sample. This
should be no surprise as Σc as a function of angle is the quantity we are aiming to measure!

The scattered intensity is proportional to dsT and hence

Imeas ∝ dse−Σtds (5)

which has a maximum at ds = 1/Σt which implies an optimum transmission, Topt = 1/e = 0.37.
The sample thickness at which this occurs is known as the “1/e length”.
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The NCNR web based SLD calculator provides estimates of Σi and Σa and gives an estimate of
the 1/e length as well as calculating the SLD.

In this experiment, the optimum sample thickness has been determined to be 1mm.

5.3 Magnetic Scattering

Small-angle neutron scattering (SANS) is ideal for obtaining both nuclear and magnetic structure,
even small magnetic moments, with sub-nanometer resolution (Fig. 3).

Figure 3: General (unpolarized) SANS set-up. The rule is that scattering can only be observed
from the component of magnetic moments oriented perpendicular to ~Q.

Selection rules dictate that only the component of the magnetic moment that is perpendicular to
the scattering wave vector, ~Q, can participate in scattering. The measured scattering intensity, I, is
proportional to the squared sum of the spatial nuclear (N2) and magnetic (M2) Fourier transforms
defined as

N,MJ(Q) =
∑
K

ρN,MJ
(K)ei

~Q·~RK (6)

where J is any Cartesian coordinate, ρN,M is the nuclear or magnetic scattering length density,

and ~RK is the relative position of the Kth scatterer.

As example, consider the case of 9 nm, spherical Fe3O4 nanoparticles, closed packed with a nearest
neighbor distance of 7.8 nm. Application of a field greater than a Tesla saturates the sample and
causes all the moments in the sample to align parallel to the field direction. The close packed
structure produces a nearest-neighbor nuclear and magnetic Bragg scattering peak 0.080 Å−1 (Fig.
4). Sector slices about the X-axis (nuclear + magnetic scattering) versus the Y-axis (nuclear only),
shown on the right hand side of Fig. 4, are remarkably similar. This can be understood by re-

examining the relative nuclear and magnetic scattering length densities, ρN=6.97 x 10−6 Å
−2

and

ρM=1.46 x 10−6 Å
−2

, respectively. Even if fully saturated, magnetic scattering is produced, at
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most
(
ρM
ρN

)2
is only equal to 4 %. Clearly, we need a better approach for measuring small magnetic

signals.

Figure 4: Unpolarized scattering shows only a small magnetic component along the horizontal with
a saturating field applied along the vertical.

5.3.1 Polarization

Once the neutron spin polarization axis has been defined by the presence of a magnetic field (even a
small field), the beam can be polarized (i.e. one spin state is preferentially selected over the other)
by scattering from an FeSi supermirror (Fig. 5).

Figure 5: Polarized SANS set-up includes a polarizing FeSi supermirror, an electromagnetic coil
that can reverse the neutron spin direction at will, a variable magnetic field at the sample position,
and a 3He analyzing cell capable of sampling a divergent, scattered beam.

The supermirror is a specially made diffraction grating that looks different to neutrons aligned
parallel and antiparallel to the applied field, thus scattering them at different angles. We send
the ↑ neutrons down the beamline, but can reverse their direction at will using an electromagnetic
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flipper coil. An analyzing glass cell filled with polarized 3He gas preferentially allows neutrons
with spins aligned with the 3He atoms to pass through, while absorbing neutrons of the other spin
state [26]. The 3He orientation, too, can be reversed at will with a nuclear magnetic resonance
(NMR) pulse of an appropriate frequency. As discussed in detail later, the 3He polarization is time
dependent. For any polarizing/analyzing apparatus, the degree of polarization (P) is defined as
the difference between the ↑ and ↓ neutrons after passing thus a polarizing device, divided by the
total number of incoming neutrons (↑ + ↓) as

P ≡
∣∣∣∣I↑ − I↓I↑ + I↓

∣∣∣∣ . (7)

The utility of adding polarization for measuring M2 is immediately obvious in Fig. 6 (compare to
Fig. 4). Sector slices about the X-axis and Y-axis from ↑ to ↑ and ↓ to ↓ scattering now contain
easily observed ± NM cross-terms (Fig. 6).

Figure 6: Polarization analysis yields an obvious magnetic scattering component, compared to the
unpolarized case in Fig. 4.

5.3.2 Spin Selection Rules

Polarization analyzed SANS can uniquely separate the nuclear scattering (N2) from magnetic
scattering of moments parallel to the applied field (M2

Y = M2
PARL) and those perpendicular to the

applied field (M2
X +M2

Z = 2M2
PERP ) for any field ≥ 0.001 Tesla. Area-normalized sector slices of

± 10o are taken about specific θ angles of interest in order to extract angular information, where θ
is the angle between the X axis (horizontal midline of the detector) and the projection of ~Q onto
the X-Y detector plane. The complete, angle-dependent polarization selection rules (Appendix A)
simplify at several key angles as follows:

N2(Q) =
1

2
(I↑↑θ=90o + I↓↓θ=90o) (8)

M2
PARL(Q) =

(I↓↓θ=0o − I
↑↑
θ=0o)2

16N2
(9)
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M2
PERP (Q) =

1

6
(I↑↓θ=0o,90o + I↓↑θ=0o,90o) (10)

M2
PARL(Q) = (I↑↓θ=45o,135o + I↓↑θ=45o,135o)− 5M2

PERP (11)

M2
PARL profiles extracted using Eqn. 9 or 11 should be equivalent. The main points to remember

are that ↑ to ↑ and ↓ to ↓ (or non spin-flip scattering, NSF) contains information about N2 and
M2
PARL, while ↑ to ↓ and ↓ to ↑ (or spin-flip scattering, SF) contains only magnetic scattering.

By taking the appropriate sector slices and from the 2D data sets and processing them in conjunction
with Eqns. 8-11, we can resolve N2, M2

X , M2
Y , and M2

Z – that is we can extract 3D magnetic
scattering information independent of the typically dominant nuclear scattering, but only after
correcting the raw data for the efficiencies of the polarizing elements (described below).

6 Collecting Data

6.1 Configuring the instrument

We must decide how to configure the SANS instrument to measure the appropriate Q range effi-
ciently. Here again we can use a computational tool, called SASCALC, as a guide. A schematic
of the NCNR’s 30 m SANS instrument is shown in Fig. 2, and the instrument configuration
parameters, and their allowed range for the NG-3 30 m SANS instrument, are listed in Table 2.

Variable Allowed Range

Source: neutron guide (NG3), 6 x 6 cm2

Monochromator: mechanical velocity selector with variable
speed

Wavelength Range: 5 to 20 Å

Wavelength Resolution (FWHM): 10 to 30% wavelength spread

Source-to-Sample Distance: 3.5 to 15 m in 1.5 m steps via insertion of
neutron guide segments

Sample-to-Detector Distance: 1.3 to 13.2 m continuously variable

Detector Offset: 0 – 25 cm (translation perpendicular to beam
to extend the q-range covered at a given SDD)

Beam stop diameter: 2.54, 5.08, 7.62 or 10.16 cm

Beam Attenuator: 10 thicknesses to reduce beam intensity

Collimation: circular pinhole collimation

Sample Size: 0.5 to 2.5 cm diameter

Q range: 0.015 to 6 nm-1

Size Regime: 1 to 600 nm

Detector: 64 x 64 cm2 He-3 position-sensitive propor-
tional counter (0.5 x 0.5 cm2 resolution)

Unique feature: neutron polarization

Table 2: Instrument configuration parameters and their range of allowed values for the NG-3 30-m
SANS instrument. [27]
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In the case of a polarized beam experiment, our choices are limited by the fact that the supermirror
polarizer is at a specific location in the neutron guide path (at the position of the 7th guide
element) and so our source-to-sample distance is fixed. We have a choice of two 3He cells with
differing characteristic wavelengths - 5Å and 7.5Å. Thus our accessible Q range is defined by the
combination of sample-to-detector distance and wavelength.

Given these restrictions, for this experiment it has been determined that the most appropriate
instrument configuration uses 7.5Å neutrons, 7 neutron guides, a 1” source aperture, a 0.5” sample
aperture and a sample-to-detector distance of 4.55 meters. This yields a Q range of 0.006 Å−1 to
0.08 Å−1.

6.2 What measurements to make

In addition to measuring the scattering from the sample a number of other measurements need to
be made.

6.2.1 Background Corrections

To correct for instrument “background” measurement of scattering without the sample is needed.
Counts recorded on the detector can come from three sources: 1) neutrons scattered by the sample
itself; 2) neutrons scattering from something other than the sample, but which pass through the
sample; and 3) everything else, including neutrons that reach the detector without passing through
the sample (stray neutrons or so-called room background) and electronic noise in the detector itself.

In order to separate these contributions we need to make three separate measurements:

1. Scattering measured with the sample in place (which contains contributions from all three
sources listed above), Isam

2. Scattering measured with the empty sample holder in place (which contains contributions
from sources 2 and 3 above), Iemp

3. Counts measured with a complete absorber at the sample position (which contains only the
contribution from source 3 above ), Ibgd

6.2.2 Polarization Efficiencies

The polarizing elements (supermirror, flipper, and 3He filter) aren’t 100 % efficient, and so leakage of
neutrons with an unwanted spin state must be accounted for. Using the four experimental scattering
cross-sections that you will collect (S↑↑, S↓↑, S↓↓, and S↑↓) and your experimentally measured the
polarization efficiencies for each polarizing element,the program Pol-Corr can automatically do
this correction for you (details in Appendix B). To determine the polarization of the 3He cell
(PCell) at any given time we use the following equations (details in Appendix F). T stands for
a transmission measurements, while S means a scattering measurements. Taking a blocked beam
measurement allows us to remove electronic detector noise and the contribution from those neutrons
that scatter around the sample area. An unpolarized beam is produced by simply removing the
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upstream supermirror. Note that the polarizing power of the 3He cell (PCell) is not the same as
the polarization state of its constituent 3He atoms (℘3He atoms).

PCell = tanh(µ℘3He atoms) (12)

µ℘3He atoms = acosh

(
Tcell, unpolarized beam − Tblocked, unpolarized beam

[Tempty, unpolarized beam − Tblocked, unpolarized beam]TEe−µ

)
. (13)

TE , the transmission of an unfilled cell, and neutron attenuation length or opacity, µ are known with
high precision for each 3He cell. They can be verified, however, by measuring by the transmission
of a depolarized 3He cell (Appendix G).

Now that we know the polarization of our analyzer, we can determine the polarization of the
supermirror (PSM ) and flipper (PF ) using the following equations where Tblocked means a blocked
polarized beam (see Appendix E for details),

PSM =

T↑↑−Tblocked
T↑↓−Tblocked − 1

PCell(1 +
T↑↑−Tblocked
T↑↓−Tblocked )

(14)

PF =

T↓↓−Tblocked
T↓↑−Tblocked − 1

PSMPCell(1 +
T↓↓−Tblocked
T↓↑−Tblocked )

. (15)

Typical values of PSM and PF are 0.90 to 0.95 and 0.96, respectively. If the sample has any
depolarizing effect on the beam due to the presence of its own magnetic domains (e.g. distinct
internal magnetic regions containing a net magnetic moment), this will fold into the measurement
of PSM (discussed in Appendix C).

6.2.3 Time dependence of the 3He

The 3He cell is polarized away from the neutron beamline using a high-powdered laser system, and
its polarization slowly decays with a lifetime (Γ) of approximately 70 to 150 hours, depending on
the stray field conditions. Both Γ and time (t) are measured in hours, and the time of collection
for each data set can be computed from a time stamp embedded in its associated header.

µ℘3He(tn) = µ℘3He(t0)e
t0−tn

Γ . (16)

There are several ways to measure Γ (Appendix F), but we shall focus only on the simplest ex-
perimentally measured approach here. Using Eqn. 13 we can measure µ℘3He at any chosen time
intervals simply be removing the supermirror, and we will measure µ℘3He(t0) at the start of the
experiment (defined as time zero). Thus, we can fit the Γ using the following relation for a series
of µ℘3He(tn)s measured during the course of the experiment,

Γ = (t0 − tn) ln(
µ℘3He(t0)

µ℘3He(tn)
). (17)

Or if preferred, one can also fit Γ as an exponential decay term from the plot of µ℘3He versus time
(Eqn. 16).
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6.3 Experimental Measurements

The sample will be mounted and aligned in the beam when you arrive and the wavelength will
be set to 7.5 Å. Your experiment will be performed in a very low magnetic field of 0.0015 Tesla
(15 Gauss). This defines a polarization axis for the neutrons so that you can do the polarization
analysis, while negligibly affecting the sample’s magnetic configuration. You’ll be able to verify
that a small polarizing field exists all the way between the supermirror and flipper to the 3He cell
using a Gaussmeter. You should be also to quickly see that the non spin-flip scattering (containing
nuclear scattering) is much more intense that spin-flip scattering (magnetic only).

The first quantitative measurements will involve taking (A) an unpolarized blocked-beam trans-
mission, (B) an empty, unpolarized transmission, and (C) an unpolarized transmission with the
3He cell moved into the beam. The transmissions will be taken at a detector distance of 13 m in
order to cover as many detector pixels as possible (this requires fewer protective attenuators than
a closer detector distance, and, thus, yields better counting statistics). Using these measurements
and Eqn. 13 you will calculate the cell opacity (µ) multiplied by the polarization of the 3He cell
(℘3He(t0)) at the start of your experiment.

Next, you will translate the supermirror into the beam to create a polarized beam. First, take a
polarized blocked beam transmission. By taking a combination of flipper on and off, and reversing
or flipping the orientation of the 3He cell with a NMR pulse, you will collect all four transmission
cross-sections (T↑↑, T↓↑, T↓↓, and T↑↓). Using Eqns. 14 and 15 you will determine the polarizations
of the supermirror and flipper, respectively.

Having made the initial measurements for quantifying the efficiencies of the polarizer and analyzer,
the sample, empty cell and blocked beam measurements can now be made. During the night you
will set-up long scattering scans for all four cross-sections. The stronger NSF scattering files will
be counted for 1.5 hours each, while the weaker spin-flip files will be counted for 3 hours each.
You will also set-up an empty sample holder to get background (since this produces no genuine
magnetic scattering, only one non spin-flip file and one spin-flip file are required). A blocked beam
measurement will also be made. You will also periodically take unpolarized transmissions at 13 m
in order to determine Γ and the resulting polarization of the 3He cell as a function of time.

7 Data Reduction and Analysis

After collecting data overnight, the first task will be to correct the scattering data files for instru-
mental geometry effects, sample transmission and detector efficiency.

Having performed initial corrections on your scattering data you will fit Γ using Eqns. 16 or 17 in
combination with the measured ℘3He(tn)s (Eqn. 13). Using this value of Γ, plus your measured
values of PSM , PF , µTE , and ℘3He(t0) from the previous day, you will polarization correct your
scattering data files and your background scattering files using the program Pol-Corr (will be shown
to you by your instructors).

You should be able to see definite, angular dependencies corresponding to Eqns. 8-11 that arise
from the magnetic contributions. By taking sector slices about appropriate axes and applying Eqns.
8-11, you will be able to extract N2, M2

PARL, M2
PERP .
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The nuclear and magnetic scattering cross sections will then be analyzed to determine the magnetic
structure of the nanoparticles compared to the nuclear structure.

15



Appendices

These appendices provide all of the calculation details and assumptions that have gone into the po-
larization corrections for users who are curious. The justifications for the measurement procedures
are also provided here. In practice, knowledge of these details are not necessary when perform-
ing a standard polarized beam experiment. However, they are included for completeness and for
reference.

In all that follows subscripts denote the orientation of the majority of neutron spins that make
it the detector (i.e. ↑↑ means that the supermirror is in, the flipper is off, and the 3He atoms
are oriented ↑). Superscripts, where used, indicate the actual number, not the measured number
with some polarization leakage included, of spins that traverse through with a specific element or
combination of elements. Along the same lines, σ indicates the true cross-section, compared to the
measured intensity, I (specifically measured as transmission, T , or scattering, S), which includes
leakage from other spin-states prior to polarization correction.
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Appendix A Vectorial Spin Selection Rules

Vectorial analysis of the spin-dependent neutron scattering is typically described in terms of the
Halpern-Johnson vector which encompasses the fact that only magnetic moments perpendicular to−→
Q participate in scattering, while the nuclear scattering only appears in non spin-flip scattering.
Here we use a modified version of the Halpern-Johnson vector (Υ) expressed in terms of angle as

ΥJ(Q) =
∑

L=X,Y,Z

ML(cos(φL,J)− cos(φQ,J)cos(φQ,L)) (18)

where φ denotes the angle between subscripted variables. J refers to the Υ direction, while L is
used to indicate a sum over three cartesian coordinates. If the A axis defines the applied field
direction, with B̂ × Ĉ = Â then [28]

I↓↓,↑↑(Q) = |N ±ΥA|2 (19)

I↑↓,↓↑(Q) = |ΥB ∓ iΥC |2. (20)

With the field direction set to X̂, the detector set in the X − Y plane, and Ẑ defining the beam
direction, this becomes

I↓↓,↑↑(Q) = N2 +M2
Xsin

4(θ) +M2
Y cos

2(θ)sin2(θ)

−2MXMY sin
3(θ)cos(θ)± 2NMXsin

2(θ)∓ 2NMY cos(θ)sin(θ) (21)

I↑↓,↓↑(Q) = M2
Z +M2

Y cos
4(θ) +M2

Xsin
2(θ)cos2(θ)− 2MXMY sin(θ)cos3(θ). (22)

These equations simplify at θ = 0o, 45o, 90o, and 135o [29]. If the field is instead applied along Ŷ ,
the result is to rotate the θ angle by 90o, and this is the basis for Eqs. 3-6 utilized in the main text
for data processing. In fact the polarized scattering behavior for any applied field direction, such
as Ẑ for example, can be derived using Eqns. 1-3.
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Appendix B Mechanics of Polarization Efficiency Corrections

Let us consider the polarized beamline set-up as three parts: a front-end (F ) comprised of a
supermirror and a flipper, the middle area containing the sample, and a back-end (B) occupied by
the 3He analyzer. What we want is to extract the sample scattering cross-sections, σ, from the
experimentally measured intensities, I. The simplest approach is to use matrix form, which will
later be inverted to yield the desired σs. Here F and B refer to the actual fraction of neutrons with
a given spin (denoted in superscript) divided by the total number of neutrons that pass through
the configuration of polarizing elements (indicated by subscript). This definition for F and B is
commonly referred to as an efficiency, ε.

F ↑(↑)B
↑
(↑) F ↓(↑)B

↑
(↑) F ↓(↑)B

↓
(↑) F ↑(↑)B

↓
(↑)

F ↑(↓)B
↑
(↑) F ↓(↓)B

↑
(↑) F ↓(↓)B

↓
(↑) F ↑(↓)B

↓
(↑)

F ↑(↓)B
↑
(↓) F ↓(↓)B

↑
(↓) F ↓(↓)B

↓
(↓) F ↑(↓)B

↓
(↓)

F ↑(↑)B
↑
(↓) F ↓(↑)B

↑
(↓) F ↓(↑)B

↓
(↓) F ↑(↑)B

↓
(↓)


︸ ︷︷ ︸

Measured Polarization Efficiencies


σ↑↑

σ↓↑

σ↓↓

σ↑↓


︸ ︷︷ ︸

Cross−Sections

=


I(↑↑)
I(↓↑)
I(↓↓)
I(↑↓)


︸ ︷︷ ︸

Experimental Data

(23)

Recall, that polarization for an element with ↑ being the majority state can be written as

P =
I↑ − I↓

I↑ + I↓
. (24)

And efficiencies for ↑ and ↓ neutrons (ε↑ and ε↓) can be written in terms of P as

ε↑ ≡ I↑

I↑ + I↓
=

1 + P

2
(25)

ε↓ ≡ I↓

I↑ + I↓
=

1− P
2

(26)

Thus, we can relate the F s and Bs to the experimentally measurable polarization values of the
supermirror, flipper, and 3He cell using

F ↑(↑) =

(
1 + PSM

2

)
; F ↓(↑) =

(
1− PSM

2

)
; F ↓(↓) =

(
1 + PFPSM

2

)
; F ↑(↓) =

(
1− PFPSM

2

)
(27)

and

B↑(↑) = B↓(↓) =

(
1 + PCell

2

)
; B↑(↓) = B↓(↑) =

(
1− PCell

2

)
. (28)

Note that PCell is time dependent (Appendix F). With the I’s measured, and the F s and Bs
determined from experiment, σs are easily determined by matrix inversion. This is facilitated
by use of the program Pol-Corr where the time that each data set was acquired is automatically
read from its header file. Multiple files for a given I measurement may be added together (after
normalization by the monitor counter) for increased statistics, while the corresponding FBs are
computed as linear combination of each file’s FB.
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Appendix C Sample Depolarization

If you have a sample that contains multiple internal magnetic regions, or domains, this can abruptly
change the magnetic field the neutron experiences as it passes through. This magnetic abruptness
can flip some of the neutron spins without the action of sample scattering, in a process known as
beam depolarization. While this is not a desirable state, it can be readily measured and accounted
for. Additionally, thin samples are less depolarizing. Let us denote the [ideally small] fraction of
neutrons that the sample (or quickly-varying stray magnetic field) inadvertently flips independent
of any sample scattering as χD, so that

F ↑(↑) =

(
1 + PSM

2

)
(1− χD) +

(
1− PSM

2

)
(χD) (29)

F ↓(↑) =

(
1− PSM

2

)
(1− χD) +

(
1 + PSM

2

)
(χD) (30)

F ↓(↓) =

(
1 + PFPSM

2

)
(1− χD) +

(
1− PFPSM

2

)
(χD) (31)

F ↑(↓) =

(
1− PFPSM

2

)
(1− χD) +

(
1 + PFPSM

2

)
(χD) (32)

If PSM is replaced by P ′SM = PSM (1− 2χD), then Eqns. 29-32 can be written exactly in the form
of Eqn. 27. This proves that the sample depolarization is directly coupled with the measurement
of PSM . Practically, this means that if a sample condition is changed in a manner that might alter
χD, then a new PSM should always be measured.
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Appendix D 3He Polarization [26]

Let us refer to the transmission of the neutron with spins parallel to the 3He cell as the majority
state, and those antiparallel as the minority state,

TMajority,Minority
3He

=
1

2
TEe

−µ(1∓℘3He). (33)

TE , the transmission of an unfilled 3He cell, and µ, the attenuation length or opacity of the 3He cell,
are typically well quantified for each cell used. (However, TEe

−µ can be measured directly using a
depolarized 3He cell, as described in Appendix G, as a double check. This is typically performed
at the the end of an experiment since it takes a while to re-polarize a fully depolarized cell.) If we
apply an unpolarized beam to our polarized 3He cell, then the number of parallel and antiparallel
neutrons should be equivalent, and we can write the total transmission through the 3He cell as

T Total3He = TMajority
3He

+ TMinority
3He

= TE(e−µ(1−℘3He) + e−µ(1+℘3He)) = TEe
−µcosh(µ℘3He). (34)

µ℘3He = acosh

(
T Total3He

TEe−µ

)
(35)

The polarization of the cell can be evaluated, using the quantity experimentally measured in Eqn.
35, as

PCell ≡

∣∣∣∣∣T
Majority
3He

− TMinority
3He

TMajority
3He

+ TMinority
3He

∣∣∣∣∣ =
TEe

−µsinh(µ℘3He)

TEe−µcosh(µ℘3He)
= tanh(µ℘3He) (36)
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Appendix E Details of Supermirror and Flipper Polarizations

To solve for the supermirror and flipper efficiencies we must either remove the sample or make the
assumption that negligible sample scattering contributes to the experimental transmissions. (Note
that in order to measure the sample depolarization, coupled into PSM as discussed in Appendix C,
the sample must remain in the beam.) Without sample scattering, we know that spin-flip scattering
ceases (σ↑↓ = σ↑↓ = 0) and non spin-flip scattering of either neutron spin direction are equivalent
(σ↑↑ = σ↓↓ ≡ σMajority). Coupled with Eqns. 23 and 27-28, this produces for the flipper off states,

I↑↑ = σMajority

[(
1 + PSM

2

)(
1 + PCell

2

)
+

(
1− PSM

2

)(
1− PCell

2

)]
(37)

I↑↓ = σMajority

[(
1 + PSM

2

)(
1− PCell

2

)
+

(
1− PSM

2

)(
1 + PCell

2

)]
(38)

Dividing Eqn. 37 by Eqn. 38 and rearranging yields

PSM =

I↑↑
I↑↓
− 1

I↑↑
I↑↓

+ 1

(
1

PCell

)
(39)

Turning the flipper on similarly produces,

I↓↓ = σMajority

[(
1 + PSMPF

2

)(
1 + PCell

2

)
+

(
1− PSMPF

2

)(
1− PCell

2

)]
(40)

I↓↑ = σMajority

[(
1 + PSMPF

2

)(
1− PCell

2

)
+

(
1− PSMPF

2

)(
1 + PCell

2

)]
(41)

PF =

I↓↓
I↓↑
− 1

I↓↓
I↓↑

+ 1

(
1

PCellPSM

)
(42)

As noted previously, PSM is a measurement of the supermirror polarizations coupled with any
sample depolarization. It is also important to remember that PCell varies as a function of time
(Appendix F). Thus, the simplest option involves measuring PCell just prior to the transmission
measurements that will be used to determine PSM and PF . This approach works because the cell
lifetime is typically 70 to 150 hours at the SANS beamlines, dependent upon the stray magnetic
fields it encounters.
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Appendix F Time Dependence of the 3He Cell

The 3He cell [26] is polarized away from the neutron beamline using a high-powdered laser system,
and its polarization slowly decays with a lifetime (Γ). Mathematically, this is described as

℘3He(tn) = ℘3He(to)e
−(tn−to)/Γ (43)

where tn is any given time after the start of the experiment, t0. Γ and tn are usually expressed
in hours. There are several approached that may be used to measure Γ, and, thus, calculate the
polarization of the 3He cell at any time that a data file was collected for processing in Pol-Corr.

F.1 Method A: Nuclear Magnetic Resonance

In many cases (such as when the 3He cell can be located far enough away from stray magnetic field)
nuclear magnetic resonance (NMR) is employed by the 3He team to measure the decay of the 3He
atoms during the entire course of the experiment. In this case, only a single measure of ℘3He(t0) is
needed to peg the absolute value of the polarization decay curve, and the uncertainty on Γ is quite
low. However, when constant NMR measurement isn’t applicable, there are two additional options
to consider.

F.2 Method B: Measuring 3He Polarization Using an Unpolarized Beam

If we can regularly remove the sample from the beam or if we can safely assume that the sample
does not polarize the beam, then we can use Eqn. 35 to calculate a series the µ℘3He during the
course of an experiment. By plotting µ℘3He (or, if preferred, ℘3He for a known µ) as a function of
time, Γ can be readily fit as an exponential decay constant Eqn. 43.

Even for cases in which the sample cannot be removed (for example when a fixed position cryostat
is used), this approach should be valid unless the sample (in a highly unlikely scenario) happens to
preferentially scatter one spin orientation over the other, such as a specifically engineered supermir-
ror does at low incident angles. Conversely, the more common condition of sample depolarization
is not in fact a problem because the original beam is already in an unpolarized state.

F.3 Method C: Measuring Flipping Ratios with a Polarized Beam

If we assume that negligible sample scattering goes into the measured transmissions, then from
Eqn. 23 measurement of flipper on and off for a 3He cell in the ↑ state yields,

TExpt(↑↑) = σNSF [(
1 + PSM

2
)(

1 + PCell
2

) + (
1− PSM

2
)(

1− PCell
2

)] (44)

TExpt(↓↑) = σNSF [(
1− PSMPF

2
)(

1 + PCell
2

) + (
1 + PSMPF

2
)(

1− PCell
2

)] (45)
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Using the definition of PCell from Eqn. 36 we get

F.R.Expt3He ↑ =
TExpt(↑↑) − T

Blocked Beam

TExpt(↓↑) − TBlocked Beam
=

1 + tanh(µ℘3He)PSM
1− tanh(µ℘3He)PSMPF

(46)

℘3He(tn) =
1

µ
tanh−1

[
F.R.Expt3He ↑ − 1

PFF.R.
Expt
3He ↑ + 1

(
1

PSM

)]
(47)

Similarly, with the 3He oriented ↓ we get,

TExpt(↓↓) = σNSF [(
1 + PSMPF

2
)(

1 + PCell
2

) + (
1− PSMPF

2
)(

1− PCell
2

)] (48)

TExpt(↑↓) = σNSF [(
1− PSM

2
)(

1 + PCell
2

) + (
1 + PSM

2
)(

1− PCell
2

)] (49)

F.R.Expt3He ↓ =
TExpt(↓↓) − T

Blocked Beam

TExpt(↑↓) − TBlocked Beam
=

1 + tanh(µ℘3He)PSMPF
1− tanh(µ℘3He)PSM

(50)

℘3He(tn) =
1

µ
tanh−1

[
F.R.Expt3He ↓ − 1

PF + F.R.Expt3He ↓

(
1

PSM

)]
(51)

Thus, as long as have measured PSM for each sample condition (this may be field and tempera-
ture dependent), and we can make the assumption that the sample scattering contribution to the
measured transmission is negligible (i.e. a significant amount of long-range, low-Q scattering isn’t
present), we can use the flipping ratios to measure ℘3He(tn). From this we can extract Γ as an
exponential decay (Eqn. 43), same as in the final step of Method B. A rough test regarding the as-
sumption of negligible low-Q sample scattering is to check whether the measured flipper polarization
changes as a function of condition-varied, sample depolarization (if present) using equations 39 and
42. The flipper polarization should only depend on the neutron wavelength, so if PF does change
with varied sample depolarization (PSM ) you might need to consider the effect of non-negligible
sample scattering into your measured transmission files.

F.4 Recap of Approaches

NMR is the best option when it can be applied. If the stray fields at the 3He cell are too great to
use NMR, then approaches B and C should be considered. B utilizes an unpolarized beam, and it is
valid as long as the sample doesn’t polarize the beam. Method C utilizes a series of polarized beam
flipping ratios, and it is valid as long as the low-Q sample scattering is negligible in comparison
with the measured transmission. Both B and C should be exact when the sample is removed from
the beam.
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Appendix G Measurement of 3He cell’s glass transmission and
opacity

TE , the transmission of an unfilled cell, and neutron attenuation length or opacity, µ are typically
known very well for each 3He cell. They can be measured directly, however, using the following
equation,

TEe
−µ =

Tdepolarized cell, unpolarized beam − Tblocked, unpolarized beam
Tempty, unpolarized beam − Tblocked, unpolarized beam

. (52)

Since TE is not be expected to change with time (and was measured well before the cell with first
filled with helium), it is more common to check that the value of µ isn’t drifting over time.
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