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Figure 1:  Lepidopteran pattern in diffuse x-
ray scattering from lattice distortions in  
La1.2Sr1.8Mn2O7 - hence the term “butterfly 
magnanite”.[1] 

Introduction

 Fifty years ago, Pierre-Gilles de Gennes recognized that the magnetic prop-

erties of manganites could be controlled via the addition or subtraction of mobile 

carriers.[2]   For example, the naturally antiferromagnetic insulator LaMnO3 can 

be tuned to be ferromagnetic (i.e., spins aligned parallel from one lattice site to the 

next) or antiferromagnetic (spins aligned antiparallel from one site to the next) by 

adding replacement Sr at some fraction of the La sites.  For La1-xSrxMnO3 (LSMO) 

the half-doped case constitutes a transition point in the phase diagram, below  x = 
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0.5, the compound is ferromagnetic, and  antiferromagnetic above.[3]  Tuning of 

the stoichiometry is commonly achieved through spatially random doping of the 

LaMnO3 parent compound.  Very recently however, Tiffany Santos of Argonne 

National Laboratory and co-workers have synthesized digitally ordered analogs of 

La1-xSrxMnO3 by alternating single unit cell layers of LaMnO3 (LMO) and 

SrMnO3 (SMO), using ozone-assisted molecular beam epitaxy.[4]  Here, we con-

sider a digitally-ordered multilayer film on a SrTiO3 substrate,  with x = 0.47 

(slightly more La than Sr) - a composition that is ferromagnetic for spatially ran-

dom doped bulk specimens.  The La richness (i.e. x < 0.5) is achieved by making 

every 4th LMO layer two unit cells thick instead of one, as shown in Figure 2.  In 

bulk, spatially random addition of La in this region of phase space increases the 

mobile electron concentration and promotes ferromagnetism.  The question is - for 
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an ordered multilayer sample, how does the spatially coherent addition of La af-

fect the magnetic properties of neighboring unit cells?  Put differently, what is the 

range of influence of the symmetry breaking extra LMO layer?  To answer this 

question, we will utilize specular polarized neutron reflectometry (PNR), an ex-

perimental technique sensitive to the structural and magnetic depth profiles of thin 

films and multilayers.     

Polarized Neutron Reflectometry

 For a detailed treatment of neutron reflectometry, see The Theory of Small 

Angle Neutron Scattering and Reflectometry by Andrew Jackson, which has been 

provided for you, and for polarized neutron reflectometry in particular, see the 

chapter by Fitzsimmons and Majkrzak in Modern Techniques for Characterizing 

Magnetic Materials  (available online at 

http://www.ncnr.nist.gov/instruments/ng1refl/Fitz.pdf).  In short, reflectometry is 

sensitive to the depth-dependent index of refraction n, for thin film and multilayer 

samples.  For light of a given wavelength, the index of refraction of a material is a 

function of that material’s electron density.  However, for a neutron beam, the in-

dex of refraction is dependent on the nuclear composition of a material, and (since 

the neutron has a magnetic moment) on the magnetization of a material.  Further, 

since neutrons have no electrical charge, a neutron beam is highly penetrating, and 

in most cases, can be used to probe interfaces buried under even microns of mate-

rial.   While useful for fundamental illustration, neutron scatterers do not typically 

refer to scattering strength in terms of index of refraction.  Instead, for reasons of 

mathematical convenience, the scattering properties of a given isotope are 
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discussed in terms of a characteristic  scattering length, with a material having a 

scattering length density (SLD)

(1)  ρ = (1- n2) Q / 8π.

where Q is the reciprocal space scattering vector.  Further, the scattering length 

density can be thought of as being comprised of nuclear and magnetic components

(2)  ρ = ρnuc + ρmag.

The nuclear component of the scattering length density is defined as

(3)  ρnuc   = ∑i bi N,

where b  is the characteristic nuclear scattering length of  a given isotope, N is the 

number density, and the summation is over each isotope in the compound.  Since 

the nuclear scattering lengths of the isotopes are known quantities (see 

http://www.ncnr.nist.gov/resources/n-lengths/), the nuclear scattering length den-

sity is directly related to the structural composition of a material.  The magnetic 

component of the scattering length density is directly proportional to the sample 

magnetization M 

(4)  ρmag  = (2.853 x 10-9) M,

for ρ in units of Å-2, and M in units of kA m-1 (1 kA m-1 = 1 emu cm-3, for those of 

you not burdened by a need to use obscure SI units for magnetism).    

 Because each neutron is effectively  a magnet with quantized spin, we can 

further enhance our sensitivity to a sample’s magnetic structure by selecting only 

one of the neutron spin states in the incident and scattered beam. The utility of 

spin polarized neutrons is that they allow us to easily distinguish between the nu-

clear and magnetic components of the scattering length density.  Using the formal-

ism that + corresponds to neutron spin parallel to a magnetic field H, and - corre-

sponds to neutron spin anti-parallel to H, we are interested in four polarized neu-
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tron cross sections.  The non spin-flip (incident and scattered neutrons have the 

same polarization) cross sections R- - and R++ are dependent on the nuclear depth 

profile, and the depth profile of the component of M(z) parallel to H.  The spin-flip 

cross sections R - + and R -+ are purely magnetic in origin, and are dependent on 

the depth profile of the component of M(z) perpendicular to H.   A schematic of 

the PNR geometry is shown in Figure 3.  

 Oscillations in reflectometry spectra originate from interfaces between re-

gions of differing scattering length density, with the amplitude of the oscillations 

depending on the magnitude of the contrast.  The thickness of a given layer t is 

manifested in the period of an oscillation in Q-space (ΔQ).  This can be qualita-

tively approximated as  

(5)  t  ≈ 2π /ΔQ .
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For polarized neutrons, the in-plane component of the magnetization parallel to the 

neutron spin is manifest in different non spin-flip reflectivities for spin-up (R++) 

and spin-down (R- -) neutrons, which are also sensitive to the nuclear scattering 

density.  The in-plane component of the magnetization perpendicular to the neu-

tron spin results in spin-flip scattering (R+-, R-+).

 Quantitative information about a sample’s real-space depth profile is de-

termined by model fitting PNR spectra to a scattering length density profile.

Apparatus

 For our measurement, we will use the NG-1 Polarized Beam Reflectometer.   

Figure 4 shows the beamline.  A pyrolytic graphite [002] triple crystal monochro-

mator intercepts a polychromatic cold neutron beam, and reflects a monochro-

matic beam (wavelength λ = 4.75 Å) down the beamline.  Moving downstream, an 

Fe/Si supermirror is used to spin polarize the neutron beam.  The magnetic field of 

the supermirror aligns the neutrons’ spin along an axis normal to the floor, and it’s 

special layer structure causes  one spin state (spin-up) to be reflected out of the 

beamline, while the other spin state (spin-down) is transmitted towards the sample.  

After the supermirror is a “Mezei” spin flipper, which consists of windings of 

aluminum (essentially transparent to neutrons) wire.  When electrical current flows 

through the wires, the a magnetic field is produced that flips the neutron spin by 

 6



180º, thus allowing the user the choice of spin-up or spin-down neutrons.  The 

sample is inside the aluminum tailpiece of “displex” refrigerator mounted in an 

electromagnet, which is attached to a rotatable sample table.  On the downstream 

side of the sample is the detector arm, which houses another Mezei flipper / su-

permirror analyzer assembly followed by a narrow “pencil” neutron detector.  Like 

the polarizer, the analyzer supermirror transmits only spin-down neutrons, thus the 

downstream assembly allows for measurement of all four polarization cross-

sections (- -, +-, -+, and ++).  Since this instrument utilizes highly collimated inci-

dent and scattered beams, achieving a high degree of neutron polarization is not 

difficult.   Typically, the beam polarization is greater than 95 %, and polarization 

corrections to the data are minor.

Experiment

 Our sample is a 15x12 mm sample of the x =0.47 LMO/LSO superlattice on 

a 1 mm thick SrTiO3 substrate as described in the introduction.  Confirmed by x-

ray reflectometry, the structure is 

{[0.40 nm LMO / 0.37 nm SMO] x5 / 0.40 nm LMO / [0.40 nm LMO / 0.37 nm SMO] x4}x4 / SrTiO3 substrate

as shown in the Figure 2 cartoon.  For our experiment we will use PNR to measure 

the magnetic depth profile of the sample at 120 K in 800 mT G.  For our purposes 

we will assume that the structural composition determined from x-ray reflectome-

try measurements (not shown) are correct.  Additionally, we know the nuclear 

scattering length densities for each of the component layers are (units of 10-6 Å-2)

  LMO:  ρnuc = 3.64, SMO:  ρnuc = 3.65, SrTiO3:  ρnuc = 3.53.

Thus there is only about 0.1 % nuclear contrast between the LMO and SMO, and 

less than 2% contrast between the multilayer film and the substrate.  Since it is the 

contrast between layers that gives rise to oscillations in the reflectivity, this means 

that our measurements won’t be very sensitive to the structural profile of the mul-

tilayer film.   Further, let’s assume that in this large magnetic field, there is no 
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component of the average in-plane magnetization that is normal to the field direc-

tion, and therefore spin-flip scattering can be neglected.  With this knowledge in 

hand, we can calculate PNR spectra for the sample, corresponding to different 

magnetic models prior to performing the experiment.  

MODEL 1)  ZERO MAGNETIZATION

What if our multilayer is totally nonmagnetic?  In this case we have zero net mag-

netization, and thus, zero magnetic scattering length density.  The profiles and cor-

responding PNR calculation for this case are shown in Figure 5.  With no magneti-
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zation, the spin-up and spin-down reflectivities (R++ and R- -) are identical, each 

exhibiting very weak oscillations corresponding to the very weak nuclear contrast 

between the superlattice stack and the SrTiO3 substrate.   

MODEL 2)  UNIFORM MAGNETIZATION

What if the multilayer has a totally uniform magnetization (as might be expected if 

the range of influence of the symmetry breaking is large)?  For bulk LSMO, the 

saturation magnetic moment is approximately m = (4-x) µB / Mn.  If we assume 

that magnetic moment, we can convert to magnetic scattering length density via

(2)  ρmag  = 2.645 x 10-5 N m,
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Where N ≈ 0.0176 Å-3 for our sample.  The profiles and PNR calculations for this 

case are shown in Figure 6.  We see that the spin-up and spin-down reflectivities 

are quite different, each exhibiting a Q-dependent “ringing” that is out of phase 

with the other.  

MODEL 3)  MODULATED MAGNETIZATION

What if the extra LMO layer influences it’s neighboring layers in a spatially de-

pendent way (corresponding to a small range of influence)?  For example, con-

sider the case where the doubly thick LMO layer, and the unit cells of SMO on ei-

ther side exhibit the saturation m = (4-x) µB / Mn, and all other layers have zero 
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magnetization.  This case constitutes a real-space periodic magnetic structure of  T 

= 15 Å magnetized + 58 Å unmagnetized = 73 Å as shown in Figure 7.  Thus, we 

can expect enhanced Bragg scattering at Q = 2nπ /  T, where n = 1, 2, 3 ...  Such 

enhanced scattering is evident in the calculated scattering, near Q = 0.08 Å-1, and 

Q = 0.17 Å-1. 

 After conducting our PNR measurement, we will compare the measured 

scattering to the three basic models discussed above.  Using the constraints of the 

model that best approximates the data, we will then optimize the real space pa-

rameters of interest (layer thickness, layer magnetization, etc.) to exactly fit the 

data, and thereby determine the magnetic depth profile.  The goal will be to deter-

mine if the magnetization is modulated, and if so, to then determine the range of 

influence of the “extra” LMO layer via the periodicity of the modulation.
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