BT-7's GroupiEs: Adventures in Spin Waves **Y Y Y Y Y Y Y Y Y Y Y** Y Y

Alice Corneliu Kate Keeseong Miaoying Vivek Xi

Presented by Group E NCNR Summer School 2009

Jeff Lynn William Ratcliff Songxue Chi

Neutron Scattering in a Ferromagnetically ordered State

Static order : Elastic Bragg Peaks

Dynamics: The spin waves follow a **dispersion** curve

- -They have a specific energy at each momentum transfer E(q)
- -Use Inelastic Scattering to measure it!

Colossal magnetoresistance manganites

- LaMnO₃ model system for manganites
- Crystal structure cubic perovskite system
- Electronic configuration of Mn d orbitals:

Magnetic and metal - insulator transition in LaSrMnO₃

• We used neutrons to study the ferromagnetically ordered state at this doping level

BT7 Triple-Axis Spectrometer

Schematic

BT7 Triple-Axis Spectrometer

BT-7 Detector/Analyzer Array

Monochromator Arrays

Cu(220) d = 1.27 Å PG(002) d = 3.35 Å

Analyzer System

"Cold" neutrons

Lower energy (0.1 - 10 meV)

Monochromator:

- 5 blades of PG (Pyrolytic Graphite) crystals.
- vertical focusing only

Analyzer – 11 blades of PG crystals

Better for small, higher resolution Q measurements

Experiment:

Studying magnetic correlations in the geometrically frustrated AF CdCr₂O₄

"Thermal" neutrons

Higher energy (5 - 500 meV)

Monochromator:

- 10 blades of PG or Cu crystals
- double focusing (horizontal AND vertical, so good for flux measurements)

Analyzer - 13 blades of PG crystals

Better for high Q measurements

Experiment:

Studying magnetic phase transition and spin wave excitations in the perovskite $La_{0.7}Sr_{0.3}MnO_3$

Data and Analysis

Dispersion Relation

Hamiltonian:
$$H = -\frac{1}{2} \sum_{i,j} J_{i,j} \vec{S}_i \bullet \vec{S}_j$$

Assume nearest-neighbor exchange only, =>

$$E_{sw} = 8SJ\sin^2(\frac{qa}{2})$$

Small-q spin wave, => $E_{sw} = 2JSa^2q^2$

Note: $E \rightarrow 0$ as $q \rightarrow 0 =>$ isotropic ferromagnet

Taylor expansion: $E_{sw} = \Delta(T) + D(T)q^2 + E(T)q^4$

The Measurement

- •"Constant q" scans
- •change the analyzer to scan through energy
- •then change q and repeat!
- •Can fit the peaks to find their centers and full widths
- •peak position changes at different q's \rightarrow DISPERSION!

The Measurement

- •"Constant q" scans
- •change the analyzer to scan through energy
- •then change q and repeat!
- •Can fit the peaks to find their centers and full widths
- •peak position changes at different q's \rightarrow DISPERSION!

Spinwave Dispersion

T=320K

Spinwave Dispersion 300 K

T=300K

Dispersion Relation

q

Dispersion Relation

Conclusion

BT7 \rightarrow Thermal neutron Triple axis spectrometer

La_{0.7}Sr_{0.3}MnO₃ → Colossal Magnetoresistive Materials

Inelastic Neutron Scattering

- \rightarrow Dispersion relation of La_{0.7}Sr_{0.3}MnO₃
- → Critical Scattering (Tc~360K)

Summer School \rightarrow Cool!