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Abstract

We will study the magnetic correlations in the geometrically frustrated antiferromagnetic spinel

CdCr2O4 using inelastic neutron scattering. In so doing, we will gain an an understanding of the

principles of Triple-Axis Spectroscopy (TAS) and learn how to analyze the TAS data obtained to

extract physical information about the system being studied.
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I. INTRODUCTION

One of the most useful properties of neutrons is that they have magnetic moments (S =

1
2
). As a result, neutrons interact with magnetic potentials in materials, which are ascribed

to either unpaired electrons or nuclear moments. Contrary to the scattering strength from

a nonmagnetic nucleus that is a scalar property, the scattering “strength” from a magnetic

potential is in fact a vector property and is proportional to magnetic moment or spin.

Therefore, orientational periodicity matters as much as positional periodicity for magnetic

neutron scattering. If there are no spatial correlations, either orientational or positional,

among magnetic moments to be studied, signals from magnetic neutron scattering will be

incoherent. This is often the case for nuclear magnetic moments since their potential is

strongly localized to each nucleus. On the other hand, electronic magnetic moments are

often spatially correlated via long-range Coulomb exchange interactions, resulting in well-

defined periodicity.

A. Magnetic structure

Once the positional periodicity of magnetic ions is given from crystal structure, one of the

main features of interest in terms of magnetic correlations is the pattern of spin orientations,

often called magnetic structure, and is one of the most often studied subjects of neutron

diffractions. Figure 1 (a) shows disordered magnetic states at two extremes. Paramagnet

is a state where each spin fluctuates rapidly and randomly without any correlations to its

neighbor. Any magnetic material will become paramagnetic at high enough temperatures

where the thermal energy is greater than the magnetic energy. The net magnetic moment

for each spin will be zero for a time scale larger than the fluctuation. Such a state is

similar to gases where the periodicity of atomic positions is lost due to thermal fluctuations.

When the temperature is lowered, fluctuations will be suppressed and each magnetic ion

will have a non-zero net moment. Spin glass is a state where there is no well-defined

long-range periodicity even after thermal fluctuations are suppressed. Quite often, however,

short-range correlations between nearby magnetic ions should exist, and the absence of long-

range order is due mostly to extrinsic reasons. On the other hand, a majority of magnetic

materials show long-range periodicity when the temperature is lowered enough. There are
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FIG. 1: (a) Schematic illustrations of disordered spin states. (b) Examples of simple magnetic

ordering patterns. (c) Classical representation of spin wave excitation in an one-dimensional fer-

romagnet.

a great diversity of known magnetic structures, yet most of them can be classified into the

classes shown in Figure 1 (b). The simplest yet contrasting cases are a ferromagnet and an

antiferromagnet, where the nearest neighbor spin correlations are opposite with respect to

each other. Additional interactions, for instance, between the second nearest neighbors may

induce non-collinear spin structures. The temperature of magnetic transition will depend on

the strength of exchange interactions and the size of available spin moments. The strength

of the major exchange interactions may be estimated from the temperature dependence of

paramagnetic inverse susceptibility (1/χ). (See Figure 2) In antiferromagnets, 1/χ−T curve

makes an intercept at T < 0, which is referred to as Curie-Weiss temperature, ΘCW .

B. Magnetic fluctuations

The magnetic ground state is where the magnetic energy of the system is minimized.

Therefore, the ground state magnetic structure must be determined by the magnetic Hamil-
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FIG. 2: Typical temperature dependence of magnetic susceptibility χ = ∂M/∂H and 1/χ for (a)

ferromagnets and (b) antiferromagnets. H and M are applied magnetic field and magnetization of

the material, respectively.

tonian that describes the energy of the system. The simplest yet useful form of magnetic

Hamiltonian may be written as below:

H = −1

2

∑

i6=j

JijSi · Sj, (1)

where Si and Sj are magnetic moments at i-th and j-th ions, respectively, and Jij is an

isotropic Heisenberg exchange strength constant between them. In the given form, the signs

and strengths of J will determine the magnetic structure, that is, J > 0 for ferromagnets

and J < 0 for antiferromagnets.

While the signs of major exchange interactions may be deduced from simply observing

magnetic structures, their quantitative strengths can be obtained by measuring spin fluctu-
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ations or excitations. It is because such interaction strength will work as a restoring force

when spins fluctuate and deviate from their ordered directions. In ordered magnets with

isotropic spins, fluctuation of each spin will propagate through the lattice and produce wave-

like excitations of finite energy depending on directions of propagation. Although spins and

their fluctuations are quantized quantities, most of the time their fluctuations can be approx-

imately yet fairly closely understood by mimicking behaviors of classical waves. A classical

illustration of ferromagnetic spin wave propagation is shown in Figure 1 (c). Dynamics of

magnetism is not limited to dispersive wave-like excitations, but also includes various local-

ized excitations such as crystal field transitions, singlet-to-triplet excitations, etc. Neutron

spectroscopy is, again, one of the most powerful technique to quantitatively investigate the

diverse range of magnetic interactions in condensed matter.

The detailed understanding of spin wave excitations is beyond the scope of this experi-

ment. Instead, we will study a different type of magnetic fluctuation arising from magnetic

short-range correlations. If magnetic fluctuation of a magnetic ion is hampered from prop-

agating through the lattice for any reason, the fluctuation may be localized and/or decay

quickly. For the particular problem to be studied in this experiment, such a localized fluc-

tuation is ascribed to topologically induced spin disorder.

II. BASICS OF NEUTRON SCATTERING

A. Neutron as a probe of matter

It is the ability of the neutron to exchange a measurable amount of energy with a liquid

or solid sample that makes it useful as a probe of the various dynamical phenomena in

condensed matter systems.1 Typical neutron energies available at a reactor source can range

from 100 – 500 meV (hot), to 5 – 100 meV (thermal), to 0.1 – 10 meV (cold), where 1

meV = 10−3 eV = 8.06 cm−1. A number of different methods can be used to prepare a

monochromatic (or monoenergetic) neutron beam having energies that are comparable in

magnitude to, for example, those of the lattice vibrations in a solid (phonons), the spin

excitations in a magnetic system (magnons), the torsional, bending, or stretching vibrations

of a polymer chain, or the rotational motions in a molecular solid (librons). It is usually

quite easy to detect the change in the neutron energy after scattering from a sample since
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the energy transferred to or from the sample ∆E = Ei−Ef generally represents a significant

fraction of the initial and final neutron energies Ei and Ef .

The energy ∆E transferred during the interaction between neutron and sample can be

used to create an excitation (such as a phonon or magnon) of the system, in which case the

neutron loses an amount of energy ∆E equal to the energy of the excitation. Conversely, the

same excitation can give up its energy to the neutron, in which case the excitation is said

to be annihilated. In either case, the physics of the excitation as revealed by the absolute

change in the neutron energy is the same. The energy transfer ∆E is often expressed as a

frequency of vibration through the relation

∆E = h̄ω, (2)

where 2πh̄ = h = 6.626× 10−34 Joules-seconds is Planck’s constant, and ω is the frequency

of vibration of the excitation. Since frequency and time are inversely related, the neutron

energy transfer h̄ω reflects the time scale of the dynamics.

Question: Estimate the value of (∆E/Ei) required to observe an optic phonon

with an energy of 10 meV using x-ray, light, and neutron scattering techniques

assuming the values of Ei = 7,000 eV, 2 eV, and 30 meV (0.030 eV), respectively.

Which technique is best suited for this measurement?

In addition to having energies that are well adapted to the study of a large variety of

dynamical phenomena, neutrons also possess the ability to provide, simultaneously, unique

information about the geometry of these dynamics through the exchange of momentum with

the sample. This is done by measuring in what directions (i. e., through what angles) the

neutrons scatter. The momentum of a neutron varies inversely with the neutron wavelength

λ, and hence an accurate measure of the momentum transferred between sample and neutron

during the scattering process will in turn provide information about the spatial scale of the

dynamics being probed. Such an accurate measure is relatively easy to obtain as long as

the neutron wavelength is comparable to the length scale of the motions of interest.
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Question: The relationship between wavelength and energy for the neutron is

given by:

E =
h2

2mλ2
= 81.81(meV · Å2)/λ2, (3)

where m = 1.675 × 10−24 grams is the mass of the neutron. Using this equation,

estimate the wavelengths corresponding to hot, thermal, and cold neutrons avail-

able at a reactor source. How do these wavelengths compare with the length scales

associated with the dynamics or motions you are specifically interested in?

In the following sections we will discuss the partial differential scattering cross section,

which is the actual physical quantity that is measured by neutron spectroscopy. We then

outline the basic operating principles behind a triple-axis spectrometer (TAS), the concept

for which Bertram Brockhouse earned the 1994 Nobel prize in physics shared jointly with

Clifford Shull.

B. The Partial Differential Scattering Cross Section d2σ
dΩdEf

Most neutron spectroscopic techniques can be reduced to a measurement of what is called

the partial differential scattering cross section, or d2σ/dΩdEf , as a function of the neutron

energy transfer h̄ω and the neutron momentum transfer Q.1 The quantity Q is known as

the scattering vector, and has units of inverse length. In the scattering process between the

neutron and the sample, the total momentum and energy of the system are conserved, i.e.

Q = ki − kf , (4)

h̄ω = Ei − Ef = ∆E. (5)

Hence the energy or momentum lost (or gained) by the neutron when it scatters from a

sample is gained (or lost) by the sample. In the previous equation, the quantities ki and kf

refer to the initial and final neutron wavevector, respectively, and point in the direction of

the incident and final (scattered) neutron beam. The relationship between ki, kf , and Q can

be represented by the scattering triangle shown in Fig. 3. The magnitude of the neutron

wavevector k is 2π/λ, and is related to the neutron energy via
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FIG. 3: Scattering triangle. The neutron is scattered through the angle 2θ and the scattering

vector, Q, is given by the vector relationship Q = ki − kf .

E =
(h̄k)2

2m
= 2.072k2[meV · Å2], (6)

From this last equation, one can obtain the second equation in Fig. 3 which relates the

energy transfer to the magnitude of the initial and final wavevectors. The angle between ki

and kf is commonly denoted by 2θ, and represents the total angle through which a neutron

is scattered by the sample. Note that the convention followed in this summer school is such

that the energy transfer h̄ω is positive when Ei > Ef , i. e. when the neutron loses energy to

the sample during the scattering process. This convention of defining when h̄ω is positive

varies among neutron scattering facilities.

The partial differential scattering cross section is defined as the total number of neutrons

scattered per second by the sample into a unit of solid angle dΩ in a given direction, having

final energies E that lie between Ef and Ef + dEf . It is normalized by the neutron flux

incident on the sample Φ0 (measured in neutrons/sec/cm2) so that it has units of area/(solid

angle)/energy. If one integrates the partial differential scattering cross section over the entire

solid angle (= 4π steradians), and all final energies (0 ≤ Ef ≤ ∞), one obtains the total

number of neutrons scattered out of the beam per second by the sample. (This assumes

that the absorption of neutrons by the sample, which can often occur, is negligible.) This is

known as the total scattering cross section σ, which has units of area. Thus σ represents the

scattering strength of the sample, and can be viewed as an unnormalized probability that an

incident neutron will be scattered. If one compares the value of σ for hydrogen with that of

aluminum, it will be clear that different elements can have enormously different scattering

strengths.
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Question: The scattering cross section for x-rays is a strong and monotonically

increasing function of atomic number Z. This is because x-rays scatter from the

electrons of an atom, which increases with increasing Z. Neutrons, by contrast,

scatter from the atomic nucleus via short-range nuclear forces. If you plot σ for

neutrons versus Z, do you see any trend? In what ways might this be advanta-

geous? (Values for σ can be obtained from the NCNR Summer School web page

under “Course Materials,” or at http://www.ncnr.nist.gov/resources/n-lengths/.)

It is instructive to consider the relative sizes of σ and d2σ/dΩdEf . Clearly σ, which

represents the total number of neutrons scattered per second by the sample, is many orders

of magnitude larger than d2σ/dΩdEf , which is an analyzed quantity both in energy and

direction. On the other hand, the partial differential scattering cross section provides a

correspondingly greater amount of information because it contains all of the details of the

individual and collective motions of the atoms, molecules, and/or any atomic magnetic

moments that comprise the sample. The differential cross section dσ/dΩ, which is what is

measured in a diffraction experiment, lies between σ and d2σ/dΩdEf in size. As the elastic

component dominates in dσ/dΩ, it gives the time-averaged (equilibrium) positions of all of

the nuclei in the sample, and is used to determine the crystal structure.

The partial differential scattering cross section can be cast into a useful mathematical

form via the formalism outlined at the end of the neutron scattering primer written by Roger

Pynn2 (which the summer student is presumed to have read). With a small deviation from

the notation used by Pynn we can write the partial differential cross section for a system

composed of a single atomic element as

d2σ

dΩdEf

=
1

4π

(
kf

ki

)
[σcohScoh(Q, ω) + σincSinc(Q, ω)] , (7)

where S(Q, ω) is exactly same quantity as I(Q, ε) used by Pynn to express Van Hove’s

scattering law. The subscripts coh and inc refer to the coherent and incoherent parts of the

scattering, and pertain to the collective or individual motions of the atoms, respectively,

as described on page 9 of Pynn’s primer. Whenever spatial correlation of scatterers is of

interest, however, the coherent term only needs to be considered.

The scattering function Scoh(Q, ω) contains a double sum over pairs of nuclei as shown
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in Eq. 3 on page 28 of Pynn’s primer.2 Each term in this sum represents the correlation

between the position of one nucleus at a time t = 0 with that of another nucleus at an

arbitrary time t later. These correlations are important for systems in which the nuclei

are strongly coupled via some type of interaction, and less so when this coupling is weak.

In either case Scoh(Q, ω) provides a measure of the strength of this coupling, and hence

the resulting collective motions. It is therefore extremely useful, for example, in mapping

out the dispersion relations of lattice vibrations, that is how the energy h̄ω of the lattice

vibrations changes at different Q positions, in solids. For the remainder of this discussion,

we will drop the subscript coh with the understanding that we are referring to the coherent

part of the scattering function.

The scattering function S(Q, ω) can be simply related to the imaginary part of the

dynamical susceptibility according to

S(Q, ω) =
h̄

π

(
1

eh̄ω/kBT − 1
+ 1

)
χ′′(Q, ω), (8)

where kB = 1.381× 10−23 Joules/K is Boltzmann’s constant (note: h̄/kB = 11.60 K/meV is

a handy conversion factor). This is a very important equation since it shows that S(Q, ω),

which is readily obtained from the experimentally measured partial differential scattering

cross section via Eq. (7), is also related to a quantity that is easily calculated by theorists,

χ′′(Q, ω). The dynamical susceptibility is a measure of how the system responds when it

is ”wiggled”. χ′′(Q, ω) refers to the imaginary part of this quantity, which is related to

how energy is dissipated by the system. Therefore a measurement of the partial differential

scattering cross section via neutron spectroscopy allows for a direct test of theoretical mod-

els. By recording the scattered neutron intensity as a function of energy transfer h̄ω and

momentum transfer Q, and removing the instrumental effects, one obtains S(Q, ω), which

contains all of the dynamical information about the system.

With the exception of the neutron spin-echo (NSE) technique, all other neutron spectro-

scopic methods measure d2σ/dΩdEf using a neutron detector to count the number of neu-

trons scattered per unit time from a sample as a function of the energy transfer ∆E = h̄ω

and the momentum transfer Q. To do this requires that one knows the energy and wavevec-

tor of the neutron before (Ei,ki) and after (Ef ,kf ) it scatters from the sample. There are

many ways of doing this, and most will be illustrated by the different experiments in this

summer school. As will be seen, each method has its own particular advantages and limi-
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FIG. 4: The relationship between the neutron scattering cross section and the spin-spin correlation

function. The relaxation rate Γ is HWHM in energy of S(Q,ω), and is inversely proportional to

the lifetime of the excitation τ . The line-width κ is the HWHM in momentum transfer of S(Q,ω),

and is inversely proportional to the correlation length ξ.

tations, depending on the range of energy transfers (time scales) and momentum transfers

(length scales) one wishes to study.

C. Understanding The Spin-Spin Correlation Function 〈SR(t) · SR
′ (0)〉

The intensity of neutrons scattered from the magnetic moments in a solid is proportional

to the spin-spin correlation function:1

d2σ

dΩdEf

= r2
0

kf

ki

|g
2
F (Q)|2 ∑

αβ

(δαβ − Q̂αQ̂β)

× 1

2πh̄

∫
dt eiωt 1

N

∑

RR′

〈
Sα

R(t)Sβ
R′(0)

〉
e−iQ·(R−R′) (9)
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where r0 = −0.54 · 10−12 cm, g is the gyromagnetic ratio, F (Q) is the magnetic form-factor

and N is the number of unit cells in the solid. Basically the partial differential scattering cross

section d2σ/dΩdEf is the Fourier transform in space and time of the spin-spin correlation

function 〈SR(t) · SR′ (0)〉. Thus, neutron elastic scattering probes static ordered moments,

whereas neutron inelastic scattering probes fluctuating (dynamic) moments.

While this equation appears formidable, Fig. 4 can help shed substantial light on the

relationship between the measured magnetic neutron scattering cross section and the time-

dependent spin-spin correlation function. The spatial dependence of the spin correlations can

be determined from the Q-dependence of S(Q, ω). For example, if S(Q, ω) is Q-resolution

limited, then this would indicate that the spatial correlations are of long-range. However,

if S(Q, ω) is broader than the instrumental Q-resolution, then the correlations are short-

ranged. A similar argument can be made for linewidths, which is the peak widths observed in

energy scans. If S(Q, ω) is h̄ω-resolution limited, then this would indicate that the temporal

correlations are of long-range. However, if S(Q, ω) is broader than the instrumental h̄ω-

resolution, then the excitations are only short-lived in time.

III. TRIPLE-AXIS SPECTROSCOPY

A. Introduction to The Triple-Axis Spectrometer

The triple-axis spectrometer (TAS) is an extremely versatile instrument that is primarily

intended for the study of the collective motions of the atoms and their magnetic moments

in single crystal samples. The first TAS system was used to obtain the first experimental

demonstration of phonon and magnon dispersion curves (in aluminum and magnetite) in

the mid 1950’s.3 The instrument derives its name from the fact that the neutrons interact

with three crystals on their way from reactor to detector, each crystal being able to rotate

independently about a vertical axis passing through its center. This is shown schematically

in Fig. 5. The first crystal is called the monochromator, as it selects a single monochromatic

component from the white neutron beam emanating from the reactor or neutron guide. The

second crystal is the sample itself (although it may be either a single crystal or a powder).

The third crystal is called the analyzer, as it is used to analyze the energy spectrum of the

neutron beam that scatters from the sample. The last primary element of the instrument
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FIG. 5: Schematic scattering configuration for a conventional triple-axis spectrometer. It measures

a scattering event at a single value of (Q, h̄ω) at a time.

is, of course, the neutron detector.

In a triple-axis spectrometer, the initial and final neutron energies are determined by

exploiting the process of Bragg diffraction from the monochromator and analyzer single

crystals. This is done by rotating the crystals about their respective vertical axes such that

a specific set of atomic Bragg planes, having a well-defined interplanar spacing d, makes an

angle θ, known as the Bragg angle, with respect to the initial (or scattered) beam direction.

When this is done, only neutrons with wavelengths that satisfy the Bragg condition (see

pages 9-11 of Pynn’s primer)

nλ = 2d sin θ, (10)

where n is an integer greater than zero, will Bragg scatter from each crystal and proceed

successfully to the next element of the spectrometer.

Question: Because the variable n in Bragg’s law can be any integer greater than

zero, more than one monochromatic component can be present in the neutron beam

diffracted by either monochromator or analyzer. List the possible wavelengths of

these other components. How might their presence affect the experimental data?

To remove the extra and unwanted monochromatic components from a Bragg diffracted

beam, while preserving the neutron flux at the desired fundamental (n=1) wavelength λ,
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it is common practice to place a filter composed of some solid material in the path of the

beam. The choice of material depends on the primary wavelength λ. For thermal neutrons,

a special form of graphite (pure carbon) known as highly-oriented pyrolytic graphite (HOPG

or just PG) is often used. Graphite has a layered structure in which the crystalline [001]

or c-axis is normal to the layers. HOPG behaves like a crystal of graphite in which the

various graphite layers have all been randomly spun about the c-axis. Therefore HOPG can

be viewed as a single-crystal along [001], and a powder along the two orthogonal directions.

It exhibits very good transmission at certain neutron energies including 13.7, 14.7, 30.5, and

41 meV. Neutrons of other energies are preferentially (though not completely) scattered out

of the beam, thereby minimizing the chance they will enter the detector and contribute to

the background.

For cold neutrons, such as those used on the SPINS spectrometer, a polycrystalline block

of beryllium (Be) or beryllium oxide (BeO) is used as a wavelength filter. The requirement

for this filter to work is that there be enough tiny crystallites to span all angular orientations,

i.e. all values of the Bragg angle θ, so that all unwanted neutrons are Bragg scattered out

of the neutron beam.

Question: (1) Consider a white (polychromatic) beam incident on a polycrys-

talline Be filter. What happens to those neutrons with wavelengths λ > 2dmax,

where dmax = 1.98 Å is the largest interplanar d spacing available in beryllium?

What happens to those neutrons with λ ≤ 2dmax? Make a simple sketch of trans-

mission versus energy for this filter.

(2) What are the criteria for ideal materials for designing neutron low-pass filters?

As can be seen from Fig. 5, when the incident neutron beam from the reactor strikes

the monochromator, it is scattered through an angle 2θm from its initial direction. This

is commonly referred to as the monochromator scattering angle. In order for the resulting

monochromatic beam to hit the sample, it is necessary to rotate the subsequent elements

(sample, analyzer, and detector) of the spectrometer about the monochromator axis through

an angle of 2θm. The same situation applies for the sample, and the analyzer, i. e. associated

with each crystal is a Bragg angle θ, and a scattering angle 2θ. Hence each axis of the triple-

axis spectrometer is actually composed of two motors, one to control the crystal Bragg
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angle θ, and the other to rotate the subsequent (downstream) elements of the instrument

by the appropriate scattering angle 2θ. While there are many different motors involved in

the operation of a triple-axis spectrometer, such as those that control mechanical slits that

limit the horizontal and vertical extent of the neutron beam, the primary instrument motors

are those that control the values of θ and 2θ for the monochromator, sample, and analyzer.

(NOTE: The convention of naming θ and 2θ comes from the fact that 2θ = 2× θ for elastic

Bragg scattering. Even though this relation no longer holds for inelastic scattering, they are

still called the same way.)

The material most commonly used as monochromator and analyzer in a TAS system is

also HOPG. Its utility lies in its very high reflectivity for neutrons over a wide range of

energy, along with its negligible incoherent scattering and adsorption cross sections, and

its low atomic number so that scattering by gamma rays is small. The (002) Bragg planes

of HOPG have an interplanar d spacing of 3.354 Å. Other materials that also find use in

triple-axis spectroscopy are silicon, germanium, and copper.

Question: Calculate the monochromator Bragg and scattering angles required to

obtain a neutron beam having initial energies Ei = 14.7 meV, and 100 meV using

the (002) reflection of HOPG. The (220) reflection of copper has a d spacing of

1.278 Å. Would this be a better choice of monochromator in either case?

During the interaction with the sample, neutrons can lose or gain energy, and thus can

emerge with an energy Ef 6= Ei. The resulting energy transfer can be computed according

to

h̄ω = Ei − Ef =
h2

8m

(
1

d2
m sin2 θm

− 1

d2
a sin2 θa

)
, (11)

where dm and da are the d-spacings of the monochromating and analyzing crystals, respec-

tively. If the analyzer is set to select the same energy as that of the incident beam (Ei = Ef ),

then h̄ω = 0, and the scattering is said to be elastic. If not, one detects inelastic scattering

events.

Measuring the momentum transfer Q between neutron and sample is achieved by orienting

the incident and final neutron wavevectors with respect to each other to obtain the desired

vector difference (ki − kf ). Unlike the case of the monochromator and analyzer crystals,
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the Bragg and scattering angles for the sample needn’t be related by a simple factor of 2.

Indeed, when measuring inelastic scattering they usually are not. Hence the notation 2θ

(which is quite common) can be misleading for the novice scatterer. With this warning in

mind, we can calculate the magnitude of the momentum transfer from the scattering triangle

diagram in Figure 3 as below.

Q =
√

k2
i + k2

f − 2kikf cos 2θ. (12)

Note that the momentum transfer does not depend on the sample Bragg angle θ, but only on

the sample scattering angle. The purpose of the Bragg angle is to allow the crystalline axes of

the sample (if it happens to be a single crystal) to be aligned in specific ways with respect to

the scattering vector Q. This allows one to probe the geometry of the dynamics in question

along different symmetry directions. The utility of the sample Bragg angle becomes moot,

however, in the case of a powder sample (composed of many tiny and randomly-oriented

single crystals).

Question: What is the maximum momentum transfer one can obtain in the case

of elastic scattering, i.e. |ki| = |kf |? What is the minimum? Why might these

two configurations be problematic from an experimental point of view?

By stepping the analyzer Bragg angle θa, or the monochromator Bragg angle θm, by

computer in small angular increments, one can effectively scan the energy transfer h̄ω.

Generally this is done while keeping the momentum transfer Q constant, and is known as a

constant-Q scan. The complement to the constant-Q scan is the constant-E scan in which

the energy transfer is held constant while one varies the momentum transfer. These two

scans are fundamental to the triple-axis method, and are used commonly to map out the

dispersion relations for both phonons and magnons in condensed matter systems.

In the case of a constant-Q scan, one has the choice of fixing either the incident or final

energy, through fixing the Bragg angles of either the monochromator or the analyzer. As

a rule, it is best not to vary both as one needs to place a wavelength filter in the path of

either the incident beam (before the sample) or the scattered beam (after the sample) in

order to remove the higher order harmonic content of the Bragg diffracted neutron beam

16



M

A

S

D

FIG. 6: Overview of the SPINS spectrometer. The arrows show the path of the neutron beam

during a scattering experiment. M, S, A, and D stand for monochromator, sample, analyzer, and

detector.

(remember the effect of the integer n in Bragg’s law). If the analyzer angle θa is fixed and one

varies θm, the result is an Ef -fixed configuration. Doing the opposite results in an Ei-fixed

configuration. Both methods yield data that contain the same physics. Deciding which to

choose depends largely on the specific problem being studied.

B. The NCNR Spin Polarized Inelastic Neutron Scattering (SPINS) Spectrometer

SPINS is a cold-neutron triple-axis spectrometer. Fig. 6 show an overview of the SPINS

spectrometer and the schematics of the neutron path. Its incident energy range can be

changed between 2.4 and 14 meV. The monochromator of SPINS consists of 5 blades of

PG crystals can vertically focus incoming neutron flux to a sample with a size smaller than

the height of the beam. On the other hand, the analyzer consists of 11 blades also of PG

crystals that are standing vertically in a row and can individually be rotated. Taking advan-

tage of this multi-crystal analyzer, SPINS is designed to operate in various configurations

including (1) conventional triple-axis mode, (2) horizontally focusing analyzer mode, and

(3) multiplexing mode. Since many components of the SPINS instrument can be changed as

necessary, other modes not described here are also possible. For instance, polarized-neutron
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FIG. 7: Schematic scattering configuration of a horizontally focusing analyzer mode utilizing a

multi-blade analyzer for a triple-axis spectrometer. It collects intensity from a broad range of

momentum transfer simultaneously while maintaining a good energy resolution.
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FIG. 8: Schematic scattering configuration of a multiplexing detection system utilizing a Position-

Sensitive-Det spectrometer. It simultaneously measures scattering events at different values of

(Q, h̄ω).

scattering mode is also optionally available.

(1) Conventional triple-axis mode has been discussed previously, and shown in Fig. 5.

At SPINS, it can be achieved by using just a few analyzer blades in the middle, typically

three, which are aligned flatly with respect to each other. A single tube detector is used

with necessary collimators through the beam path.

(2) Horizontally focusing analyzer mode is schematically shown in Figure 7. The basic

idea of this mode is to focus scattered neutrons over a wide solid angle into a single tube

detector. It has an effect of relaxing momentum resolution while maintaining energy reso-
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TABLE I: Comparison chart of neutron scattering spectrometers at NCNR in terms of the needs

for this particular experiment.

Issues SPINS BT7/9 DCS HFBS NSE FANS

|ΘCW | ≈ 88 K corresponds to J ≈ 1 meV © × © × × ×
S(Q,ω) at well-defined Q(hkl) space © © 4 × × ×

diffraction can also be done with good resolution © 4 × × × ×

lution. As a result, detected neutron intensity will increase roughly proportionally to the

number of the focusing blades. It is very efficient in data collection rate when the features

to be measured are broad in momentum space. Ideally the blades need to be positioned on

an arc of a circle encompassing the positions of the sample and the detector, so that Bragg

angles for all the blades are equal. In practice, one can achieve an approximate focusing

condition by placing the row of the blades tangential to the relevant arc, and maintain a con-

stant incident angle of neutrons for each blade. The momentum resolution can be adjusted

by appropriately selecting the number of focusing blades.

(3) In multiplexing modes, a wide area of the position sensitive detector (PSD) is used

together with the multi-crystal analyzer. In the most typical setup, schematically shown in

Figure 8, the 11 analyzer blades are aligned in such a way to scatter neutrons into equally-

spaced columns on the PSD. If the blade arrangement is nearly flat as in Figure 8, each

blade will have a different Bragg angle and subsequently a different energy. Therefore,

signal from each blade will correspond to both different momentum and different energy

transfers. The positional sensitivity of the PSD can efficiently discriminate this information.

This mode is very efficient in data collection when momentum dependence of excitation is

two-dimensional or less. Typically a calibration run should be performed for a given setup

using an incoherent scatterer, and used as a reference for energy and intensity calibrations.

Various creative combinations of the analyzer-PSD setups are possible depending on the

necessity of the experiment.

At NCNR there are several neutron scattering spectrometers with diverse experimental

capabilities that are available to internal and external users. Whenever neutron scattering

experiment is planned, it is very important to consider various aspects of experimental needs

and select the best suited instrument. Table I summarizes the most important reasons why
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SPINS, the cold neutron triple-axis spectrometer, is the best instrument for this particular

study in comparison with other instruments. An additional advantage of using SPINS

is that various experiments requiring different experimental configurations, such as elastic

versus inelastic, high versus low Q resolution, and high versus low energy resolution, can be

performed in series on the same instrument.

IV. SPIN FLUCTUATIONS IN GEOMETRICALLY FRUSTRATED ANTIFER-

ROMAGNETIC SPINEL CDCR2O4

A. Geometrically frustrated magnets

In certain magnetic materials, magnetic order would not appear even when the system is

cooled down much below the temperature comparable to the major exchange strength. In

this experiment we are particularly interested in the case where crystal structure is respon-

sible for the suppression of magnetic order, which is often called geometrical frustration. As

the simplest example, consider a case where antiferromagnetic spins are placed on an equi-

lateral triangle as in Figure 9 (a), and assume only two spin orientations are allowed, either

up or down. After placing the first two spins antiparallel to each other, the third spin cannot

simultaneously satisfy antiferromagnetic correlations with the two other spins. It is often

said that the third spin is frustrated. In fact, it is not just the third spin but the three-spin

system that is frustrated, and there are more than one lowest energy state possible for the

given system. Such topologically induced multiply degenerate ground states that prevent

the system from ordering is a characteristic of geometrically frustrated magnets. One of the

most well known examples is realized in the case of the corner-shared network of tetrahe-

dra found for spinel (AB2O4) B sites. (See Figure 9 (b)) Due to the intricate network of

infinite number of triangles, antiferromagnetic order cannot be stabilized even for isotropic

Heisenberg spins where any orientation of spins is allowed.

Most geometrically frustrated magnets will eventually order when the temperature is

lowered enough. It is often realized by structural distortions that reduce crystal symmetry.

Frustration factor, f = |ΘCW |/TN , is usually larger than 10 for most frustrated magnets. In

the temperature range between TN and |ΘCW |, the system is in a supercooled state where

a strong tendency for establishing long-range magnetic order is held back by reasons other
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FIG. 9: (a) Three spins on a triangle cannot simultaneously satisfy antiferromagnetic correlations

with all of their neighbors. (b) Spinel B sites form a corner-shared network of tetrahedra, which

consists of many edge-shared triangles. It is often called a pyrochlore lattice.

than thermal fluctuations. This suggests that each ion will possess a finite magnetic moment

and interact strongly with neighboring ions, contrary to usual paramagnets. Therefore, via

neutron scattering one may expect to observe short-range magnetic correlations, both in

space and in time, and fluctuations between multiple degenerate ground states.

Question: Consider the case of a triangular lattice with isotropic Heisenberg

spins. If nearest neighbor exchange is antiferromagnetic, is geometrical frustration

expected or not?

B. Spin-Peierls-like phase transition in chromate spinels

Spinels with Cr3+ ions on B sites are good examples to study geometrical frustration.4–7

It is because Cr3+ ion has three electrons in its 3d orbital. Under the 6-coordinated oxygen

environment as in spinels, these three electrons will equally populate dxy, dyz, and dzx wave

functions, corroborating an isotropic cubic environment. Therefore, electronic orbitals will

have no effect in distorting cubic symmetry. In contrast, spinels with V3+ (3d2) ions on

B sites are well known to have orbitally driven structural phase transitions due to their

freedom to selectively populate two out of three available wave functions.8 Such absence of

orbital degrees of freedom in chromate spinels is intriguing in two aspects. One is that its

frustration factor is maximized because orbital effects will not help, and the other is that
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FIG. 10: (a) Bulk susceptibility, χ, as a function of T . The inset shows a linear fit to 1/χ. (b)

T -dependence of the normalized neutron scattering intensity at the magnetic peaks and that of

the lattice strains. The data were obtained from fitting the data in (c) and (d) to gaussians. (c),

(d) Elastic neutron scattering data (c) through incommensurate magnetic (1,δ,0) reflections and

(d) through a nuclear (400) Bragg reflection below and above TN . (From Ref. 7)

an observed structural transition will most likely be ascribed to the reduction of magnetic

energy alone.

ZnCr2O4 has a Curie-Weiss temperature |ΘCW | ≈ 390 K, while its magnetic transition

occurs at temperatures as low as TN = 12.5 K.4 The estimated frustration factor is as large

as f ≈ 31, demonstrating a large degree of geometrical frustration. The lifting of frustration

is achieved via a cubic-to-tetragonal lattice distortion (c < a = b) that simultaneously

occurs with the magnetic transition. Such contraction along the c axis conveniently explains

the reduction of magnetic energy by satisfying four antiferromagnetic correlations out of

six.6 Experimentally, however, magnetic order shows up with multiple ordering wave vectors

and the true ground state spin structure is yet to be revealed. In this experiment, we

investigate a closely related compound CdCr2O4 where only the non-magnetic A site ion
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is replaced. Since ionic distances are increased due to the larger Cd ion, its magnetic

interactions are weaker than in ZnCr2O4, that is |ΘCW | = 88 K and TN = 7.8 K. (See

Figure 10 (a)) Quite surprisingly, however, its cubic-to-tetragonal distortion (c > a = b)

occurs along the direction opposite to the one observed in ZnCr2O4, and the magnetic order

is incommensurate with a single wave vector k = (1,δ,0), δ ≈ 0.09. (See Figure 10 (b)-

(d)) Such diversity in magnetic transitions from geometrically frustrated chromate spinels

demonstrate the complexity of the antiferromagnetic interactions in pyrochlore systems.

V. EXPERIMENT AND ANALYSIS

A. Experimental Planning and Setup

The purpose of this experiment is to understand the nature of magnetic fluctuations of

geometrically frustrated antiferromagnetic spinels. From the combination of elastic and in-

elastic neutron scattering measurements, we will be able to identify the spatial and temporal

correlations of both spin-frustrated and spin-ordered phases. We chose CdCr2O4 as a model

system to study. While its frustration factor is smaller than that of ZnCr2O4, we prefer

CdCr2O4 because it has a well-defined magnetic order with a single ordering wave vector.

The notorious problem of any sample containing cadmium is that naturally occurring cad-

mium has a prohibitively high neutron absorption cross section. Fortunately, such high

absorption is ascribed only to 113Cd, which is 12.22 % in natural abundance. Therefore, we

will use single crystal samples enriched with 114Cd for neutron scattering.

While the energy of the analyzer may be arbitrarily chosen for triple-axis spectrometers,

the typical energy of the analyzer at SPINS is either 5.0 meV or 3.7 meV. This is mostly

because these numbers are just below the cut-off energies of low-pass Be and BeO filters,

respectively. One may access wider momentum space with reasonable intensity with Ef =

5.0 meV, while better energy resolution is obtained with Ef = 3.7 meV. The low-pass

filters are inserted between the sample and the analyzer, and will prevent scattered high-

energy neutrons from entering analyzer-detector assembly and leaving spurious experimental

artifacts. For elastic scattering an additional low-pass filter is usually inserted between the

monochromator and the sample.

A single crystal sample of 114CdCr2O4 has been oriented in the hk0 scattering geometry,
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FIG. 11: Reciprocal space planes of CdCr2O4 in the (a) hk0 and (b) hhl scattering geometries.

Large blue and small red dots mark positions of nuclear and magnetic Bragg peaks, respectively.

The solid lines are Brillouin zone boundaries.

where the cubic a and b axes are located in the horizontal scattering plane. (See Figure 11

(a)) An alternative orientation is the hhl scattering geometry, where one of the two axes are

rotated out of the horizontal plane by 45o while the other remains. (See Figure 11 (b)) In

the case of inelastic scattering, three pieces of crystals were co-aligned and mounted together

to enhance scattering intensity. The samples are then sealed in a He-filled aluminum can

and cooled down by a liquid-He filled cryostat. The instrument will be operated in fixed-

Ef mode with Ef = 5.0 meV. The instrumental configuration for inelastic measurements

following the neutron path downstream is: neutron guide–monochromator–80’ collimator–

sample–Be filter–radial collimator–11 blade horizontally focusing analyzer–detector (G–80’–

Be–RC–11HFA–D in short). The energy resolution for the above configuration is about 0.3

meV.

B. Data and analysis

Figure 12 shows the energy dependence of magnetic inelastic neutron scattering intensity

measured at Q = (1 1 0) above and below TN = 7.8 K. The neutron scattering spectrum at

T = 15 K, which is above TN and in the spin disordered phase, is featureless and very broad

in energy. This means that the magnetic fluctuation at this temperature is quasi-elastic in

nature and short-lived in time. We can roughly estimate the relaxation rate Γ, which is
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FIG. 12: Inelastic neutron scattering intensity at Q = (1 1 0) of CdCr2O4 as a function of energy

transfer. The red square and black circle point are measured above and below TN , respectively.

The lines are guides to the eye. The thick and short horizontal bar is the experimental resolution

width.

the Half-Width-at-Half-Maximum (HWHM) of S(ω): Γ ≈ 2 meV. One may estimate the

lifetime of the dynamic correlations at this temperature to be h̄/Γ ∼ 0.3 · 10−12 s. On the

other hand, the spectrum at T = 4 K, which is below TN and in the spin ordered phase,

shows well defined peaks at h̄ω = 0.65 meV and 2.1 meV. Particularly, the width of the peak

at 0.65 meV is comparable to the instrumental resolution. It means that these are normal

modes of spin wave vibrations arising from cooperative thermal fluctuations of ordered spins.

The spatial dependence of the dynamic spin-spin correlation function can be obtained by

observing momentum dependence of the inelastic neutron scattering intensity. Spin wave

dispersions will always show minima at magnetic Bragg peak positions, since momentum

transfer around those positions correspond to long-wavelength in-phase fluctuations of or-

dered spins. The understanding of spin wave dispersions from antiferromagnetic spinels,

however, is a very complicated problem. Instead, we will try to understand the dynamic

spin-spin correlation function in the spin frustrated phase. Figure 13 (a) shows the contour

of inelastic neutron scattering intensity measured on the hk0 plane of CdCr2O4 at h̄ω =

0.6 meV and T = 15 K. The apparent strong momentum dependence of the inelastic in-

tensity is evidence that there is a good deal of spatial correlation between the spins in the

25



FIG. 13: (a) Momentum dependence of inelastic neutron scattering intensity, h̄ω = 0.6 meV,

measured in the spin frustrated phase of CdCr2O4. (b) Magnetic neutron cross section calculated

from the equation of antiferromagnetic hexagon ring that is described in the text. The solid lines

are Brillouin zone boundaries.

supposedly disordered phase and strongly suggests that the fluctuations in the geometrically

frustrated phase is far from being random. While the magnetic ordering wave vector for the

spin ordered phase is (0 δ 1) with δ << 1, the fluctuation pattern does not form around

either (0 0 1) or (1 1 0). Instead, it forms a large ring around (2 2 0), and thus is distinctly

different from spin wave excitations in the ordered phase.

To understand the spatial correlations of the observed fluctuations, we calculate the dy-

namical part of the magnetic structure factor and compare with the experimental data.

Since the fluctuation is supposed to be quasi-elastic in nature, one may use the static corre-

lation function (t →∞) derived from Equation (9), which is essentially equal to the square

of the magnetic structure factor as below.

dσ

dΩ
∝ |F (Q)|2 ∑

αβ

(δαβ − Q̂αQ̂β)
∑

RR′
Sα

RSβ
R′e

−iQ·(R−R′) (13)
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∝ |F (Q)
∑

R

(SR)⊥e−iQ·R|2

Above, S⊥ = Q̂ × (S × Q̂), which means that only the spin components perpendicular to

the momentum transfer vector contribute to the magnetic neutron scattering cross section.

Assuming there is no spin anisotropy for the fluctuation in the frustrated cubic phase,

the above equation can be further simplified by simply replacing S⊥ with S. Since the

correlation of the fluctuation is supposed to be short-ranged, it is straightforward to enter the

coordinates of the magnetic ions and spin orientations into the above equation and calculate

the momentum dependence of the quasielastic neutron scattering cross sections. There

may be several possible candidate models for short-range antiferromagnetic fluctuations,

such antiferromagnetic pairs, antiferromagnetic chains, tetrahedra, etc.. Students will be

given a code to perform these model calculations, but also are welcome to write their own

code and/or try out the solutions analytically. Figure 13 (b) is a calculation using an

antiferromagnetic hexagonal loop model, which best describes the experimental data. The

considered model consists of six antiferromagnetic spins forming a hexagon. The analytical

formula for the neutron cross section is given as follows.

|F (Q)|2 ∝ {sin π

2
h · (cos

π

2
k − cos

π

2
l)}2 (14)

+ {sin π

2
k · (cos

π

2
l − cos

π

2
h)}2

+ {sin π

2
l · (cos

π

2
h− cos

π

2
k)}2

During the Summer School experiments, students will take another set of data in the hhl

scattering geometry, compare with the model calculation, and see whether or not the anti-

ferromagnetic hexagon model correctly describes the nature of the fluctuation.

In order to understand the temperature dependence of this short-range spin correlation,

we have performed inelastic neutron scattering measurements along the [h h 0] direction at

various temperatures. Figure 14 (a) shows that as the temperature is increased the intensity

gradually decreases while the peak width does not change noticeably. From the plot of

integrated intensity shown in Figure 14 (b), we see that this short-range spin correlation

shows up at a temperature near |ΘCW | = 88 K. Therefore, we conclude that the nearest

neighbor antiferromagnetic exchange interactions is responsible for this short-range spin

fluctuation.
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FIG. 14: (a) Momentum-dependence of the inelastic neutron scattering intensity measured at

various temperatures below ΘCW and at h̄ω = 0.6 meV. The solid lines are fits to Gaussians. The

short horizontal bar below the data at T = 15 K is the experimental resolution. (b) The integrated

intensity from the fittings in (a) as a function of temperature.

VI. SUMMARY

Triple-axis spectroscopy is one of the most widely used neutron scattering techniques for

studying lattice and magnetic dynamics in condensed matter. Its strength is in its capability

to measure S(Q, ω) at desired momentum and energy transfers with great flexibility. In this

experiment, we have studied the geometrically frustrated antiferromagnetic spinel CdCr2O4.

Its frustrated magnetism is characterized by a large difference between two characteristic

temperatures, |ΘCW | = 88 K and TN = 7.8 K. Below TN , where a long-range antiferro-

magnetic order is established via a cubic-to-tetragonal lattice distortion (c > a = b), spin

wave excitations can be observed at finite energy transfers by inelastic neutron scattering.

A resolution-limited line shape is observed for such excitations, suggesting that these spin

waves are long-lived in time. Between TN and |ΘCW |, on the other hand, the magnetic

fluctuation showed a very broad spectrum both in energy and momentum. It is consistent

with the presence of short-range and short-lived magnetic clusters in the spin disordered

phase. By comparing model calculations of magnetic neutron scattering cross section and

experimental quasielastic scattering intensity, we find that the spin fluctuation in the geo-
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metrically frustrated cubic spinel can be understood as short-range cooperative fluctuations

of hexagonal antiferromagnetic spin loops.
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