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Outline
• Neutron Sources

• Cold Neutron Source
– Neutron Moderation

– Liquid Hydrogen, Ortho/para H2

• Ultra-cold Neutron (UCN)• Ultra-cold Neutron (UCN)

– How are UCN useful?

• Fundamental Neutron physics with UCN

– How to make a lot of them?

• Thermal, Turbine, Superthermal,…

• References:

– “Ultracold Neutrons”, Golub, Richardson, Lamoreaux

– “Neutrons, Nuclei and Matter”, J. Byrne
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How to make free neutrons?
• Natural

– Secondary particles generated by high-energy collisions between 
protons and nuclei at the top of the atmosphere.

• Attenuated by the reaction 14N(n,p)14C

– 238
92U: spontaneous fission

• Artificial

– (α,n) sources: 226Ra+Be,239Pu+Be,241Am+Be, .. – (α,n) sources: 226Ra+Be,239Pu+Be,241Am+Be, .. 

– Photoneutron process: 2H(γ,n)1H, 9Be(γ,n)8Be

– Accelerator sources
• Bremsstrahlung from e- accelerators for (γ,n) process

• 2H(d,n)3He, 3H(d,n)4He, …

• 3H(p,n)3He, 7Li(p,n)7Be, …

• spallation

– Fission chain reaction
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CW vs Pulsed Source

• Continuous Wave (CW) Sources

– Thermal fission reactors

– Steady State Accelerator (SINQ)

– Stable operation

• Pulsed Sources

– Intense Instantaneous Flux

– Atomic bomb: single shot

– Pulsed reactors

• TRIGA reactor

– Accelerator driven 

• Spallation source
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TRIGA Reactor (Training, Research, Industry, General Atomic)

Fuel: Zirconium (91%)+U(8%, 20% 
235U)+H(1%mass=50 atom%)

• Due to the H content, the fuel elements 

contribute directly to the moderation of 

neutrons.

The TRIGA was developed to be a reactor that was designed to be "safe even in 

the hands of a young graduate student.“ 

– Frederic de Hoffmann, head of General Atomics

neutrons.

• In order to induce a neutron burst, one 

control rod is removed rapidly from the 

reactor core. The reactor is made prompt 

critical with its power rises to 250MW within 

milliseconds. 

• The fuel elements heat up to temperature 

of about 300 °C and the energy spectrum 

of the neutrons is shifted into the region of 

absorption resonances of 238U. Thus, the 

reactivity of the reactor drops drastically.

A quick removal of the control rod 

results in a short spike of the neutron 

flux of 100ms duration with an 

integrated neutron fluence of 1014

n/cm2

Handbook of Nuclear Chemistry By A. Vértes, S. Nagy, Z. Klencsár
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Fast Pulse Reactor (IBR-2, JINR, Dubna)

Average thermal power 2 MW

Power pulses with a frequency of 5 Hz are generated by reactivity modulators 

which are the main moveable reflector (MMR) and the auxiliary moveable 

reflector (AMR). When they both approach the core, a power pulse develops.

Average thermal power 2 MW

Peak power in pulse 1500 MW

Power released between pulses 0.12 MW

Pulse repetition rate 5 Hz

Half-width of thermal neutron pulse 320 ms

Thermal neutron flux density from 

surface of the grooved-type 

moderators, space averaged: 

- time-averaged 

- at maximum of the pulse

F~8x1012 n/(cm2sec) 

Fmax~5x1015 n/(cm2sec)

(effective for a beam)

Thermal neutron flux density in 

moderator at maximum of the pulse 2.4x1016 n/(cm2sec)
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High Flux Reactors

• ILL, FRM-II

• Designed to produce a maximum neutron flux

– Concentrate a maximum of fission events in a minimum of 
space.space.

– Problem: remove the heat due to the fission reactions from such 
a small volume. 

– Use a single fuel element (for high mechanical stability) which 
resembles a turbine of a small core.

– A total amount of 2010 m3 of D2O is pumped through the turbine-

like fuel element, with an inner speed of 15 m/s.

– 1000 times the flux of the TRIGA reactor.
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Research Reactors

Facility Power (MW) Neutron Flux (n/cm2-s)

NIST 20 4×1014

ILL 54 1015

FRM-II 20 8×1014

PNPI (WWR-M) 10 1.2×1014

Pulstar 1 1.1×1013

• Energy released: 200MeV/fission

• 2.5 fast neutrons per fission

• Moderator (D2O, Graphite) required to slow fast 

neutrons to thermal energies

– H2O with enriched 235U
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Spallation Neutron Source
• IPNS, Chicago

• ISIS, England

• SINQ, Switcherland

• LANSCE, Los Alamos

• SNS, Oak Ridge

Spallation:

• Smash protons into a material made of 

heavy atomic nuclei, which contain many 

protons and neutrons. 

• Each collision shakes loose some 

neutrons and other particles. 

• The secondary particles hit surrounding 

nuclei and create even more neutrons.

• 20~30 fast neutrons / proton

EB~8MeV/nucleon
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Cold Sources

• are used to further thermalize thermal 
neutrons to lower temperatures

• Typically liquid hydrogen or deuterium 
operating at ~ 20K.operating at ~ 20K.

• Placed in the highest neutron flux possible 
(i.e., near the reactor core).

• Outgoing neutrons are coupled to neutron 
guides which “transport” the neutrons to 
experiments.
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Neutron Moderation

• Elastic Collision between 

neutron and proton (almost 

equal mass)

• Neutrons come into • Neutrons come into 

thermalization with the 

moderator material.

• In real system, thermalization 

is not complete, because of

– Absorption (filter out low energy 
neutrons)

– Leakage out of the source
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Hydrogeneous Moderator

Neutron scattering lengths and cross sections

Isotope conc Coh b Inc b Coh xs Inc xs Scatt xs Abs xs 

1H 99.985 -3.7406 25.274 1.7583 80.27 82.03 0.3326 

2H 0.015 6.671 4.04 5.592 2.05 7.64 0.000519 

Molecular Hydrogen: 

Nuclear 
Spin

Ortho (more 
abundant)
Spin

Para
spin

Normal Rotational State

H2 ½+1/2=0,1

(Fermi stat.)

1  

(sym)

0 

(anti-

sym)

3/(3+1)=75% ortho Odd J  

1/(3+1)=25% para Even J (J=0, ground

state)

D2 1+1=0,1,2

(Bose stat.)

0,2 

(sym)

1 

(anti-

sym)

6/(6+3)=66% ortho Even J (J=0, ground 

state)

3/(6+3)=33% para Odd J

Molecular Hydrogen: 
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Liquid 

Hydrogen 
Ortho-H2

Para-H2 

(ground state)

Spin coherence

Intermolecular 

interference
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Application to cold neutron 

moderation

• The main energy transfer mechanism for 

neutrons at low energies is the para to ortho 

spin-flip transition, where the neutron losses spin-flip transition, where the neutron losses 

energy of 14.7 meV.

• Ortho/para ratio depends on the beam power.

– Conversion towards ground state para-H2.

– Radiations create excited ortho-H2 state.
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Liquid

Deuterium

Para-D2

ortho-D2 (ground state)

Intermolecular 

interferenceinterference

R. E. MacFarlane, "New Thermal Neutron Scattering Files for 
ENDF/B-VI Release 2," Los Alamos National Laboratory report 
LA-12639-MS (ENDF 356) (March 1994)
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Common moderators

Property Symbol H2O D2O Be C

Mean 

lethargy 

increment

ξ 0.920 0.509 0.209 0.158

Diffusion 

length (cm)

L 2.88 100 23.6 50.2

Diffusion td 3.1×10-4 0.15 4.3×10-3 1.2×10-4

Glasstone and Edlund (1952)

Diffusion 

time (s)

td 3.1×10 0.15 4.3×10 1.2×10

Albedo β∞ 0.821 0.968 0.889 0.930

Slowing-

down

length (cm)

Ls 5.7 11.0 9.9 18.7

Slowing-

down 

time(s)

ts 10-5 4.6×10-5 6.7×10-5 1.5×10-4

Migration 

Length(cm)

M 6.4 101 25.6 53.6
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Other Hydrogeneous 

Moderators

• Solid Methane

– CH4

– CD44

• Polyethylene (High Density)

– (CH2)n

• ZrH2 

– used in TRIGA reactors 20



Fermi Pseudo-Potential

Fast Neutrons

(particle pictures)

Slow Neutrons
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Ultracold Neutrons (UCN)

• E < 335 neV (Ni58)  

• T < 4 mK

• Velocity  < 8m/s

θ θ

• Velocity  < 8m/s
• λ > 500 Å

Total reflection at all incident angles! 23



Material VF(neV) vc (m/s) ηηηη (××××10-4)

D2O 170 5.6

Be (BeO) 250 6.9 2.0-8.5

C 180 5.8

π

π Nb

mm

V
v

nn

F
c

h22
==

Material Potential

Mg 60 3.4

Al 50 3.2 2.9-10

SiO2 (quartz) 110 4.6

Cu 170 5.6 2.1-16

Fe 220 6.5 1.7-28

Co 70 3.7

Ni 230 6.8 5.1
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Fermi Potential Under Fields

ghmB
m

Nb
V nn

n

F +⋅±=
rrh

µ
π 22

±60neV per 1T

-100 neV per 

meter rise

+100 neV per +100 neV per 

meter drop
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UCN Transport

• Not 100%

– Loss at boundary between vacuum and medium due 

to capture or inelastic scattering.

• Weakly absorbing medium with a total cross-section σt

– Loss per bounce:– Loss per bounce:

• Anomalous loss: surface contaminants, non-uniformity

δ
σ

ψσµ 2
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UCN guide with a big diameter 

(anodomechanical technology)

Installations for the final stage of polishing
High polished stainless steel 

tube with a diameter of 150 mm

27

Installation for Ni58Mo 

coating inside the tube

Courtsey,  A. Serebrov



UCN guide with a big diameter 

(replica technology)

Installation for coating of Ni58Mo 

on the float glass foil after separation 

from glass

(size 700x470 mm2)

28

preparation of 

a UCN guide

UCN guides of 

different diameters

Courtsey, A. Serebrov



Brief History of UCN

• Neutron discovered in 1932 –

Chadwick

• Concept of UCN was probably 

realized by Fermi, but Zeldovich was 

the first to take it seriously enough to 

put it input print (1952).put it input print (1952).

• Vladimirskii (1961) proposed 

magnetic focusing.

• First observed by Shapiro (1969) at 

JINR (Dubna) and independently by 

Steyerl at FRM in Munich.
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Why UCN?
UCN have advantages over higher energy neutrons (cold 

neutrons): 

– UCN can be confined in a trap

• Copper wall ~ B=2.8 T ~ h=1.7m

– Low background

– Long storage time
• UCN can be stored up to the β-decay lifetime, a relatively long 

coherence time of measurements (for particle physics experiments).

– 100% neutron polarization

• Provide motivation to shift from cold neutron beams to UCN 
for β-decay angular correlation experiments and EDM 
experiments.

Clean, high precision experiments with reduced, well 

controlled systematic effects.
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Neutron measurements which address 

fundamental particle physics issues

• Neutron ββββ-decay lifetime and angular correlations
test the V-A theory and place direct constraints on extensions 
to charged current sector of the standard model.

• Permanent electric dipole moment (EDM) search

T reversal symmetry & CP violation extensions to the standard T reversal symmetry & CP violation extensions to the standard 
model.

• N-Nbar oscillation search

place useful limits on (B-L) violating processes.

Motivated by the observed baryon asymmetry of the universe.
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Neutron β-decay

• Cold Neutron beam experiments:
– Absolute measurements of the neutron number and the decay 

particle flux.

τ β = N0 /Nd

•

N(T) = N e
−T /τ β ⇒ τ = T

Lifetime

• Bottled UCN:                          
– Ratio of the neutrons stored for different periods. It is a relative 

measurement.

– Material bottle -- Mampe (887.6 ± 3 s)
• Wall loss depends strongly on the UCN spectrum.

• Systematically limited.

– Magnetic bottle –
• Hexapole bottle (876.7 ± 10 s)

• NIST bottle (833+74
-63s).

• Statistically limited.

N(T) = N0e
−T /τ β ⇒ τ β = T

ln(N0 /N(T))
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Serebrov et al.,

Phys. Lett. B 605, 72 (2005)

(878.5 ± 0.7 ± 0.3) seconds

Progress of Neutron Lifetime Measurements
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Asymmetry in angular correlations
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Angular correlation 
experiments

UCNA (taking physics data at LANL)

aSPECT (done at ILL, data analysis)

abBA, Nab, PANDA (planned at SNS)

aCORN (in construction)

Run at NIST
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Measuring Zero –

New Era of Exotic Interactions

• P-odd, T-odd moment

– Permanent Electric Dipole Moment (EDM) search

– Put the most stringent limits on many T reversal symmetry 

violation extensions to the Standard Model.violation extensions to the Standard Model.

• Baryon number violation

– N-Nbar oscillation

– Proton decay

Both are motivated to explain the observed

Baryon Asymmetry of the Universe.
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Baryogenesis created more matter than anti-matter

• Sakharov’s criteria

– Baryon number violation

– CP violation and C violation

– Departure from thermal 

equilibrium
EDM

38



Search for Neutron EDM



ILL Experiment:

• UCN in storage cell (Be 

electrode, BeO dielectric cell 

wall) at room temperature 

• Ramsey’s separate oscillatory 

field method (interference in 

time domain)



Traditional technique: Nuclear Magnetic Resonance 

h
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• Apply static B, E||B

• Look for ∆ω on reversal of E

µB
• dn: additional precession:

Figure: Physics Today 56 6 (2003) 33



Nnbar Oscillation
• Current limit: τnnbar> 8.6×107 s (free n), 1.2×108 s (bound n)

• New theoretical prediction: 1010 s 

B. Dutta, Y. Mimura, R.N. Mohapatra, PRL 96, 061801 (2006).

Courtesey, A.R. Young

• Evaluated idealized geometry & conclusion:

• UCN rate > 5.7 ×107 UCN/s for 3 years to reach τnnbar >109 s 

• Need more UCN � Source R&D
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UCN Quantization under Gravity

• Quantization of neutron wave-
function in the gravitational field 
of earth.

V.V. Nesvizhevsky, et al., Nature 415, 297(2002)

– Because of the small scale of the 
gravitational force (relative to E&M and 
nuclear force), observation of such 
effect is extremely challenging.

• Energy ~ peV.
– 10 µm against gravitation on earth.
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Technical Challenges with 

Experiments using UCN:

Need more UCN flux!Need more UCN flux!
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UCN in Thermal Spectrum

• Thermal Neutron Flux: 

UCN fraction:  









= −

kT

E
d

kT

E
edEE nnkTE

nnT
n /

0)( ϕϕ

11
0

300

0
10)( −≈∫ ϕϕ

neV

T dEE

9
0

300

0
10)( −≈∫ ϕϕ

neV

T dEE

with 300K thermal flux

with 20~30K cold flux

•UCN (100neV) and VCN (100µeV)
(fundamental particle physics)
•Gravitational deceleration 

•Turbine deceleration (ILL source)

•Superthermal UCN converter
45



46



Steyerl, 1975

40m/s

Diameter: 1.7m

690 thin nickel curved blades

Spacing: 7.7mm

230 rpm
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UCN Source Worldwide

• Solid D2 based Source

LANL (existing)

PSI, TUM, Mainz, NCSU (in 

construction)

LENS (planned)

•Liquid Helium based Source

Osaka, ILL (prototype)Osaka, ILL (prototype)

PNPI (in construction)

TRIUMF (proposed)
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UCN Production: Neutron Cooling

Courtsey of Masuda
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Superthermal Process

• Cold neutrons downscatter in the solid, giving up 
almost all their energy, becoming UCN.

R. Golub and J. M. Pendlebury, Phys. Lett, A53, 133 (1975)

• UCN upscattering (the reverse process) is 
suppressed by cooling the moderator to low 
temperatures. 50



Dynamics of  UCN Production --
Defeat thermal equilibrium

● Lifetime of UCN in the source material is a critical parameter in the establishment 
of large UCN densities.

● Extract UCN out of the source before it is thermalized ⇒ Spallation N source + 
Seperation of the source and the storage + a UCN Valve

51
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Superfluid 4He – UCN production

• Isotropic superfluid 4He
– Energy excitation is isotropic.
➔ Neutron scattering is isotropic.

• UCN can accumulate until the production rate = loss rate

Landau-Feynman's dispersion
curve for superfluid 4He

Kinetic energy of a 
free neutron

11 K

0.7/Å

• UCN can accumulate until the production rate = loss rate
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S(Q,ω)  for liquid He
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• UCN production rate:                           UCN/cm3Hsec

• UCN density:

• The figure of merit: s a
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
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• The figure of merit:

Isotop σσσσcoh σσσσinc σσσσa σσσσs/σσσσa
purity Debye T

2D 5.59 2.04 0.000519 1.47×104 99.82 110
4He 1.13 0 0 ∞ 20

15N 5.23 0.0005 0.000024 2.1×105 99.9999 80
16O 4.23 0 0.00010 2.2×104 99.95 104

208Pb 11.7 0 0.00049 2.38×104 99.93 105

s a
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Solid Deuterium –UCN production (I)
• Incoherent contribution ( σσσσ

inc
= 2.04 barn)           

( due to the difference of singlet and triplet scattering)                     

– No momentum delta function in the scattering cross section.

➔ All the Cold Neutron with energy smaller than the Debye T could     

( )ωωZd
q

∫∑→

➔ All the Cold Neutron with energy smaller than the Debye T could     
become UCN through incoherent phonon creation.
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• Coherent contribution ( σσσσ
coh

= 5.59 barn)

– Momentum and energy conservations are still strictly hold.
– The anisotropic dispersion relation broadens the range of 

conditions for single phonon creation process. 
➔ In a cold neutron flux with a continuous spectrum, more 

neutrons could  participate in the UCN production.

Solid D2 – UCN production (II)

neutrons could  participate in the UCN production.

(1,1.73,0)

(1,1,0)

(1,0,0)

59



Solid Deuterium - UCN Loss 

Nuclear absorption by S-D Nuclear absorption by Hydrogen 

Storage 
bottle

Nuclear absorption by S-D2

ττττ ~ 150 msec

Nuclear absorption by Hydrogen 
Impurities, ττττ ~ 150 msec/0.2% of H

UCN upscattering by phonons
ττττ ~ 150 msec at T = 5K

UCN upscattering by para-D2

ττττ ~ 150 msec/1% of para-D2

Solid D2
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UCN lifetime in S-D2

LANL UCN prototype source
(2000)

• Superthermal temperature dependence.

• Para-D2 upscattering time: 1.2 ±±±± 0.2 ms.

C. Morris et al., Phy. Rev. Lett. 89, 272501 (2002)
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Volume Scan

LANL UCN prototype source
(2000)

• UCN yield saturates above 200 c.c ⇒ mean free path = 8 cm

Resulted from UCN incoherent elastic scattering (random walk).
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UCN Production Measurement --

Bottle Technique LANL UCN prototype source
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Los Alamos s-D2 UCN Prototype 

Source
WORLD RECORD

C. Morris et al., Phy. Rev. Lett. 89, 272501 (2002)

• Source has para-D2: 4%
• Bottled UCN density: 100 UCN/c.c. in a S.S. bottle 1 m 

away from the source. (world record)
• UCN Flux = 3.8×104 UCN/s
• Noticeable beam heating on solid deuterium.
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PSI

Atchison et al. 2005

Courtsey of Altarev 68



Source Candidates

8099.99992.1e+52.4e-55e-45.2315N
20∞∞∞∞001.134He
11099.821.47e+45.2e-42.045.592D
TDebyepurityσσσσtot/ σσσσabsσabsσincσcohIsotope

10599.932.4e+44.9e-4011.7208Pb
10499.952.2e+41.0e-404.2316O

Too Heavy ! Too Expensive !
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Solid Oxygen as a UCN Source

• Electronic spin S=1 in O2 molecules.

• Nuclear spin = 0 in 8O

• Anti-ferromagnetic ordering
α-phase, T < 24K.α-phase, T < 24K.

UCN Production in S-O2

• Produce UCN through magnon 
excitations.
– Magnetic scattering length ~ 5.4 fm. 

• Null incoherent scattering length.

• Small nuclear absorption probability.

P.W. Stephens and C.F. Majkrzak, Phys. Rev. B 33, 1 (1986)

⇒A very large source 
possible.
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Neutron Scattering in Solid O2

• Spin(n) -Spin(e) coupling
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Updated S(Q,ω)

• More detailed data taken at 

ISIS independently confirms 

these results

• Origins of the “soft” modes, 

precursors to the long-range 
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AF order, in beta phase 

needs explanations. 
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(DCS at NIST)

0.00

2.00

4.00

6.00

8.00

0 1 2 3 4

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

0 1 2 3 4



Pulse-tube
Refrigerator
(1.5W @4K)

Cold N

M1

Beam

Monitor

M2 M3

Target Cell 

(100 c.c.)

Choppers
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SC solenoid 
Cryostat

Monitor

UCN Guide:
polished SS 
Guide (186 neV)

UCN Detector
(ion chamber w/10mbar He-3, 
1000mbar CF4)



UCN Production in S-O2

large ??

α-O2
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Los Alamos UCN Source
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SNS FNPB

SNS nEDMSNS nEDM
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PNPI-UCN Source
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Project Site Method Production 
Rate/cc

Converter 
Volume

Useful 
Density

UCNA 

prototype

LANL Spallation target, 

SD2

500 UCN/cc/µA

(up to 10 µA)

300 cc n ≤ 150

UCNA 

production

LANL Spallation target, 

SD2

90 UCN/cc/µA

(up to 10 µA)

2000 cc n ≤ 0.15/µA

PULSTAR NCSU 1-2 MW Reactor, 

SD2 (CW)

12,000

UCN/cc/MW

1000 cc n ≤ (50-200)

Mainz/FRM-II TUM TRIGA reactor, 

SD2

22,000/pulse n=10

n≤10,000

81

SD2 n≤10,000

Osaka Osaka 

University

Spallation target, 

LHe

3.5 UCN/cc/µA 12000 cc n ≤ 5.2

SUNS PSI Spallation target, 

SD2

15,000

UCN/cc/µA

(8 mC in 4s/500s)

30,000 cc n ≤ 2500

PF4 ILL 54 MW reactor, 

LHe

n ≤ 40

TRIUMF-UCN TRIUMF Spallation target, 

LHe

400 UCN/cc/µA 

,400µA

n≤ 42,000

PNPI-UCN PNPI Reactor 30,000 n≤ 40,000



Summaries
• Cold Neutron/UCN experiment is truly multidisciplinary.

– Nuclear physics, condensed matter physics, atomic physics, particle 
physics

– Energy scale ranging from peV to TeV.

• UCN can be stored in a well-shielded box for high 
precision measurements for a long coherence time.

• Many new cold neutron and UCN facilities are coming • Many new cold neutron and UCN facilities are coming 
online this decade
– Cold Neutron Source: Liquid H2, D2, Solid CH4, Poly, …

– UCN converter: Superfluid He, Solid D2, Solid O2

• Experiments are table-top scale (or a single room size 
scale) 
– Neutron beta-decay lifetime (Paul Huffman)

– Neutron beta-decay angular correlation (Stephan Baeβler)

– Neutron EDM search (Brad Filippone)

– PV NN interaction (Mike Snow)

– Neutron Gravity (Abele)
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