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Lecture 1: on the symmetries of the Standard Model (SM) and the role β-decay played in their elucidation
Lecture 2: on β-decay and precision tests of the SM at the quantum level

Lecture 3: on difficulties with the SM and how neutron observables open windows to their resolution



The Standard Model

describes all known electromagnetic, weak, and strong
interaction phenomena in a formalism with predictive power.
It has gauge bosons γ,W±,Z 0,g and three generations of quarks(

u
d

) (
c
s

) (
t
b

)
and leptons (

e
νe

) (
µ
νµ

) (
τ
ντ

)
and a fundamental scalar HSM which has not yet been found.
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on Mass

Mass is key to explaining the relative strength of the weak
and electromagnetic interactions.

What is the origin of mass?

The gauge boson masses, as well as the masses of the elementary fermions,
arise through the spontaneously breaking of a local gauge symmetry.
This is known as the “Higgs mechanism”.
The Higgs mechanism is also key to describing the quark mixing observed
under the weak interactions: it gives rise to the Cabibbo-Kobayashi-Maskawa
(CKM) matrix.
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Spontaneous Symmetry Breaking

Let’s begin with the example of a Heisenberg ferromagnet: H = −g
∑

i,j Si · Sj
with g > 0.
At T < Tc the system develops a non-zero magnetization M 6= 0.
The Hamiltonian is rotationally invariant, but its ground state
is not – the symmetry of H is hidden.
Spontaneous symmetry breaking (SSB) also operates in QCD.
The u,d quarks are very light compared to Mp. If mq = 0

LQCD = LL
QCD + LR

QCD

If this chiral symmetry were explicit, one would expect the low-lying hadronic
spectrum to contain parity doublets, but this does not occur.
Perhaps the axial vector currents are spontaneously broken. [Nambu and Jona-Lasinio,

Phys. Rev. 122, 345 (1961).]

Goldstone’s Theorem: For every spontaneously broken
continuous symmetry, the theory must contain a mass-
less particle (Goldstone boson). [Goldstone, Nuovo Cim. 19, 154 (1961)]
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The Pattern of Low-Lying Meson Masses

Masses of states which differ only in (u,d) are nearly degenerate.

There are eight low-lying 0− states — π±, π0,K 0, K̄ 0,K±, and η
— the η′ is much heavier.

We can explain this pattern by invoking symmetries which
are, in turn, approximate (isospin), spontaneously broken
(chiral), and anomalous (axial U(1)).
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Spontaneous Symmetry Breaking

Here’s a class of potentials which can be used to describe the spontaneous
breaking of a continuous symmetry...

A “Mexican Hat” Potential
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Secret Symmetry

Let’s see how this can work. Consider the potential for a real field φ. Suppose
µ2 > 0, real and λ > 0.

V (φ) =
1
2
µ2φ2 +

λ

4!
φ4

This is symmetric under φ→ −φ, and the minimum energy state is φ = 0.
What if µ2 → −µ2? Then

V (φ) = −1
2
µ2φ2 +

λ

4!
φ4

Now the minimum energy state corresponds to φ 6= 0! There are two minima.
Expanding φ about one minimum, φ(x) = v + σ(x), e.g., we would find that
the new potential no longer had σ → −σ manifest.
If we had looked at the potential corresponding to the surface of revolution of
this potential (N = 2 scalar fields), we would have had a continuous
symmetry, and if we had expanded about the vacuum expectation value, we
would have found a massless state.
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The Higgs Mechanism

A continuous, local symmetry can be spontaneously broken without yielding
Goldstone bosons; rather, the gauge bosons gain mass. Our by now-familar
potential is that of the Higgs scalar field.

For now, we set aside the
question of why the W± and Z
gauge bosons have the masses
that they do; this mechanism
provides no explanation for
this, nor for the pattern of
fermion masses.

A “Mexican Hat” Potential
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Spontaneous Symmetry Breaking without Goldstone Bosons

Here we work in the context of a theory with local gauge
invariance – and that makes all the difference!
Let’s consider QED with no fermions but with a complex scalar field:

L = −1
4

FµνFµν + (Dµφ)(Dµφ∗)− V (φ)

This L is invariant under

φ(x) → eiα(x)φ(x) ; Aµ(x) → Aµ(x)− 1
e
∂µα(x)

This is a U(1) symmetry.
N.B. φ is coupled to the photon through Dµ = ∂µ − ieAµ.
Now when we expand φ about the minimum of V (φ), spontaneously breaking
the local gauge symmetry, we find that our would-be massless state gives
mass to the photon!
A model for the Meißner effect in Type I superconductors! [Landau-Ginzburg theory!]

This mechanism generalizes to non-Abelian gauge theory.

S. Gardner (Univ. of Kentucky) Theory of β-decay (2) FNP Summer School, NIST, 6/09 9



The Glashow-Salam-Weinberg Model

To build the Standard Model, we must

Pick the gauge group: The electroweak portion of the
Standard Model is a quantum field theory based on a
SU(2)L×U(1)Y local gauge symmetry.
Choose the particle content and its group representations and charge
assignments:
We put a complex scalar field in a SU(2)L doublet. This upon SSB will
yield 3 massive gauge bosons: W±,Z 0. Since the W± carry electric
charge, electromagnetism must “lie across” SU(2)L×U(1)Y . N.B.
Q = T3 + Y . Note φ has Y = +1/2.
We put the fermions in left-handed doublets and right-handed singlets
generation by generation.
E.g., (

νe

e−
)

L
≡ EL T3 = ±1

2
Y = −1

2
eR T3 = 0 Y = −1

S. Gardner (Univ. of Kentucky) Theory of β-decay (2) FNP Summer School, NIST, 6/09 10



The Glashow-Salam-Weinberg Model

Fermion Masses
We cannot give the fermions mass as in QED because

meψ̄ψ = me(ψ̄LψR + ψ̄RψL)

is forbidden by SU(2)L×U(1) gauge invariance!
We must use the Higgs mechanism!

Le mass = −λeĒLφeR + h.c.

with φ0 = 1√
2

(
0
v
)

Le mass = − 1√
2
λevēLeR + h.c.

and we identify the electron mass me = 1√
2
λev .

For 3 generations of down-like and up-like quarks:

Lq mass = −λij
d Q̄ i

Lφd j
R − λij

uQ̄ i
Lφ

†uj
R + h.c.

CP is broken if λij
d,u are complex!

N.B. QL has T3 = ±1/2, Y = +1/6; uR has Y = +2/3; dR has Y = −1/3
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Quark Masses and Mixings

The λij
d,u can be anything! They are only constrained by

symmetry before we fit them to experiment.
We can simplify by rotating to a basis in which the quark mass matrix is
diagonal

u′ i
L = U ij

u uj
L ; d ′ i

L = U ij
d d j

L

This complicates the expression, however, for the quark charged weak
current:

Jµ
W + =

1√
2

ūi
Lγ

µd i
L

=
1√
2

ū′ i
L γ

µ(U†uUd )ijd ′ i
L

Enter the Cabibbo-Kobayashi-Maskawa matrix:

VCKM = U †uUd

Uu,d is clearly unitary, and thus VCKM is also.
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The Cabibbo-Kobayashi-Maskawa (CKM) Matrix

The decay K− → µ−ν̄µ occurs: the quark mass eigenstates mix under
the weak interactions. By conventiond ′

s′

b′


weak

= VCKM

d
s
b


mass

; VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


In the Wolfenstein parametrization (1983)

VCKM =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 +O(λ4)

where λ ≡ |Vus| ' 0.22 and is thus “small”. A, ρ, η are real.
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Testing the Quark Mixing Matrix

In the Standard Model (SM)

There are three “generations” of particles. Thus, the CKM matrix
is unitary.
The unitarity of the CKM matrix and the structure of the weak
currents implies that four parameters capture the CKM matrix.
A real, orthogonal 3× 3 matrix is captured by three parameters.
The fourth parameter (η) must make VCKM complex.
All CP-violating phenomena are encoded in η.

To test the SM picture of CP violation we must test the
relationships it entails.
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Testing CKM Unitarity – “the” Unitarity Triangle

[CKMfitter: hep-ph/0104062, hep-ph/0406184 ; http://ckmfitter.in2p3.fr – April, 2006 update]
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Testing CKM Unitarity – “the” Unitarity Triangle

[CKMfitter: hep-ph/0104062, hep-ph/0406184 ; http://ckmfitter.in2p3.fr – June, 2007 update]
The possibility of non-SM CP violation is gradually being relegated to a
smaller and smaller role, but some intriguing discrepancies remain....
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A Precision Test of CKM Unitarity

Using the global fits...
The first row of the CKM matrix yields the most precise test of CKM unitarity:

|Vud |2 + |Vus|2 + |Vub|2 = 0.9992± 0.0011

whereas

|Vud |2 + |Vcd |2 + |Vtd |2 = 1.001± 0.005
|Vcd |2 + |Vcs|2 + |Vcb|2 = 0.968± 0.181

N.B. the W leptonic width and the Vud unitarity test (1st row) yields

|Vcd |2 + |Vcs|2 + |Vcb|2 = 1.003± 0.027

cf. α+ β + γ = 184+20
−15

◦.
[“The CKM Quark-Mixing Matrix,” PDG, 2006.]

Tests to this precision require precise computations of SM
radiative corrections...

gv = Vud (1 + ∆r̂β −∆r̂µ)

The precision of the current unitarity tests probes the reliability of these
computations to the sub-1% level.
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Testing SM radiative corrections

SM radiative corrections relate the vector weak coupling constant gV of the
nucleon to Vud .
The decay n → pe−ν̄eγ has finally been observed.

For ω ∈ [0.015 MeV,0.340 MeV] we find a Br of 2.85 · 10−3, cf. with the expt’l
result of 3.13± 0.34 · 10−3 . [Nico et al. (NIST), Nature, 2006]

The O(1/M) terms contribute O(0.04%) to the Br.
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[J. Nico (NIST)]
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on Vud

The best determination of Vud comes from 0+ → 0+ decays in nuclei. [Hardy and

Towner, arXiv:0812.1202v1]

The corrected F t values require
nuclear-structure-dependent
corrections:
F t ≡ ft(1 + δ′R)(1 + δNS − δC) =

K
2G2

v (1+∆V
R )

Note i) nuclear axial radiative
correction, ii) charge-dependent
nuclear matrix element overlap, iii)
hadronic structure in the γW± box.
ii) has been recently criticized [Miller and

Schwenk, 2008]

Note breaking developments vis-a-vis
iii) [Gorchtein and Horowitz, 2008]
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