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Abstract 
 

Time-of-flight neutron spectroscopy will be used to probe water dynamics close to the 
surface of a small hydrophilic peptide. This experiment illustrates the important 
technique of quasielastic neutron scattering (QENS). We shall discuss all aspects of the 
experiment, from sample preparation and the choice of instrumental setup through to data 
treatment and interpretation of results. 

 

 



I. Introduction 
 

In many real life situations water molecules are confined near surfaces, or contained 
within small cavities and are integral to most biological macromolecules. The interfacial 
water plays a particularly crucial role in determining the dynamics and conformations of 
proteins. It is known that protein dynamics are not fully activated until a critical level of 
hydration water is present and the dynamics are strongly correlated with enzymatic 
activity. Understanding the dynamical properties of hydration water is important to gain 
insight into microscopic mechanisms behind protein functionality. 
 
To illustrate the difference in water dynamics between bulk water and that next to a 
hydrophilic biological surface we will measure the water dynamics in a N-acetyl-glycine-
methylamide (NAGMA) solution where the peptide has been deuterated.  
 
We will be using the Disk Chopper Spectrometer at the National Institute of Standards 
and Technology Center for Neutron Research to probe local dynamics of water adsorbed 
near the surface of this small peptide. After reading the background material you should 
be able to choose an appropriate spectrometer configuration to probe the temperature 
dependent diffusional dynamics present in the NAGMA:H2O system. 
 
The neutron has several properties that enable scattering experiments to measure 
properties of materials that other techniques can measure with much less precision or not 
at all. Neutrons with wavelengths on the order of interatomic spacings also possess 
energies on the same order as those characteristic of phonons and intermolecular 
interactions; for example, a 1.8 Å neutron has an energy of ~25 meV (~200 cm-1) and 
speed ~2200 ms-1. This means that structural and temporal information can be measured 
simultaneously. 
 
The reader is reminded that the scattering of neutrons is usually treated as the sum of two 
parts, known as coherent and incoherent scattering. To understand why such a separation 
is performed recall that the strength of the scattering from nuclei of the same element can 
vary (and generally does vary) with spin and/or isotopic species. Hence when a neutron is 
scattered by a collection of nuclei the interference between the different scattered waves 
is normally neither complete nor completely absent. For this reason the double 
differential cross section 2[d / d d ]σ Ω ω , which describes the probability that neutrons are 
scattered into solid angle dΩ and energy transfer window d( ω), is normally separated 
into two terms. The first term is the coherent part, which contains all of the interference 
effects such as Bragg scattering and small angle scattering. The second term is the 
incoherent scattering, which represents the scattering from individual nuclei and is 
approximately isotropic. For a single element 2[d / d d ]σ Ω ω  can be expressed as  
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where ki and kf are the magnitudes of the initial and final neutron wavevectors, σcoh and 
σinc are the coherent and incoherent scattering cross sections, and S(Q, )ω and incS (Q, )ω  
are the corresponding scattering functions which depend only on the momentum transfer 



Q  (or wave vector transfer Q) and the energy transfer ω . (Note that in general Q is a 
vector but since we shall be working with a liquid, which has no preferred orientation, all 
that need concern us in this experiment is the magnitude of the vector.) The most 
important incoherent scatterer is hydrogen for which σinc= 80.3 barns/atom whereas σcoh 
is only 1.76 barns/atom (1 barn = 10-24cm2). Since the incoherent scattering cross section 
of hydrogen is much larger than those of almost all other nuclei, it is often reasonable (as 
a first approximation) to neglect the coherent scattering in systems that contain a 
relatively large fraction of hydrogen atoms.  

 
Elastic neutron scattering is scattering with no change in neutron energy, i.e. 
with 0ω= , and inelastic neutron scattering is scattering with a change in neutron 
energy, i.e. with 0ω≠ . On the other hand, quasielastic neutron scattering (QENS) 
involves the Doppler-like broadening of otherwise elastically scattered neutrons due to 
reorientational or diffusive motions of atoms in the target material. Thus QENS is a 
special kind of inelastic neutron scattering. In this experiment you will use neutron 
scattering to measure QENS spectra close to room temperature and interpret the resulting 
data. 
 
We shall first describe the sample to be used for the experiment. The next section gives a 
brief discussion of the spectrometer as well as matters to be considered in choosing the 
incident wavelength for this experiment. We then describe the reduction of the data to 
obtain the scattering function, and we follow with some words about the scattering that is 
expected for these measurements. This then sets the scene for the analysis and discussion 
of the experimentally measured scattering function. 
 

II. The sample 
 
Prior to the experiment a 1.5M CD3CONHCD2CONHCD3 (N-acetyl-glycine-
methylamide, NAGMA) solution will have been loaded into an annular aluminum cell. 
The aluminum cell will be mounted in a closed-cycle helium refrigerator to allow for 
temperature control. Through the night we shall collect data at temperatures and 
wavelengths decided by the experimental group. 

 

 
 

Can you explain the usefulness of deuteration, given that σcoh(deuterium) and 
σinc(deuterium) are 5.6 barns/atom and 2 barns/atom, respectively? 

Why do we typically use aluminum for sample containers and cryostat windows? 

Given that the molecular mass of NAGMA is 138.2 g, and the volume of the 
aluminum can is 1.5 ml, how much NAGMA must be used to obtain a 1.5 M 
solution? 



 
To reduce the data we will need a detector normalization file obtained using a sample of 
vanadium metal, plus a “dark count” run with the beam closed (a type of background). 
These runs will have been performed before the start of the summer school since there 
will not be time to complete them during the school.  

 
 

 
III. The spectrometer 

 
We shall be performing this experiment using the Disk Chopper Spectrometer (DCS), 
which is a so-called “direct geometry” (fixed incident energy) time-of-flight 
spectrometer. In this type of instrument (figure 2) bursts of monochromatic neutrons 
strike the sample at equally spaced times. The energies of the scattered neutrons are 
determined from their arrival times at the detectors, since we know when the pulses were 
created as well as the distances DPS from the pulsing device to the sample and DSD from 
the sample to the detectors. There are two ways to produce a monochromatic pulsed 
beam at a steady state neutron source. One method is to use a single crystal to 
monochromate the white beam and a mechanical “chopper” to pulse it; the other method 
is to use multiple choppers, such as the seven (!) choppers of the DCS. 

 

Apart from indium, what materials might be used to seal sample containers? 

Detector at scattering
angle 2θ

SP

known
distance DSD

known
distance DPS

2θ

D

Figure 1. A schematic 
illustration of the 
scattering geometry for a 
direct geometry time-of-
flight spectrometer such 
as the DCS. 

Why do we use vanadium to normalize the data from different detectors? Hint: 
σcoh= 0.02 barns/atom, σinc= 5.19 barns/atom. 



 
 
Given the initial and final energies of the neutrons, Ei and Ef, the energy transfer 

i fE Eω= −  is trivially obtained. Knowing the scattering angle 2θ we can also calculate 
the magnitude of the momentum transfer to the sample, Q : 

 2
n i f i f( Q) 2m E E 2 E E cos 2⎡ ⎤= + − θ⎣ ⎦  (2) 

where mn is the mass of the neutron. (This follows from the definition i fQ k k= −  and 
the relationship between the magnitude of a neutron’s wave vector, k, and its energy E: 

2 2
nE k / 2m= .) 

 
The data acquisition system separately accumulates neutron counts for each of the 913 
DCS detectors. Furthermore the time between pulses, T, is normally divided into 1000 
time channels of equal width Δt = 0.001T and each neutron event in a given detector is 
stored in one of these time channels according to its time of arrival at the detector. Thus 
the data acquisition system generates a two-dimensional array of counts I(i,j) as a 
function of detector index i and time channel index j. This array is accumulated in a 
“histogramming memory” which is resident in the data acquisition computer and 
reflected to the instrument computer. At the end of each run cycle the array is saved, 
along with other pertinent information, to the hard disk of the instrument computer. 
 
With the sample environment mounted on the spectrometer, we can control and monitor 
the temperature remotely. We must also set the incident wavelength, together with a few 
other parameters such as the “master speed” of the choppers. The choice of wavelength is 
critical to the experiment and several factors must be considered. These include intensity 
at the sample (which peaks, remaining roughly constant, between ~2.5 and ~4.5 Å, see 
Appendix A), the width of the elastic energy resolution function (which roughly varies as 
1/λ3), the available Q range (which varies as 1/λ), and concerns about “frame overlap” 
problems. A related consideration is the available range of energy transfers in sample 
energy gain (neutron energy loss). 
 

 
Overnight you will collect data. You will need to define a “sequence” consisting of 
several “runs”. The sequence may also include a change in sample temperature or 
incident wavelength. Each run is divided into a set of “cycles” of relatively short 
duration, typically 10 to 15 minutes . At the end of each cycle the temperature is recorded 
and the data are backed up to the disk. Having defined the runs we shall start the 

A monochromatic pulsed beam of neutrons can in principle be created using two 
choppers.  How does that work? Can you think why more than two choppers 
might be needed and/or desirable? 

What is the maximum theoretical sample energy gain that can be measured when 
the incident energy is Ei, and how long would it take to measure the intensity of 
neutrons scattered with this change in energy? 



overnight sequence of measurements. Next day we shall stop the measurements and start 
into the data reduction. 
 
In the experimental runs we shall collect intensity histograms I(i,j) for the sample at 
temperatures and wavelengths of your choice. Using previously acquired intensity 
histograms for a vanadium sample and for a “dark count” run with the beam shutter 
closed, we shall reduce the data to obtain the scattering function. 
 

IV. Data reduction 
 
In this section we shall indicate some of the more important steps in the data reduction 
process.  We shall go into greater detail in our discussions at the time that the data 
reduction takes place. 
 
The measured scattering in a sample run includes contributions from the sample itself, 
from its container and the sample environment, and from the time-independent 
background. Before doing any data analysis we need to subtract the time independent 
background from each of the runs. We also need to subtract scattering from the container. 

 
Neglecting effects such as self-shielding and multiple scattering the scattering in detector 
i and time channel j may be related to the corresponding double differential cross section 

2
ij[d / d dt]σ Ω  (note that this is per unit time, not energy) in the following fashion: 
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where ΔΩ, the solid angle subtended by detector i, and Δt, the width of time channel j, 
are (for these measurements) independent of i and j respectively, Nm is the number of 
sample molecules in the beam, ηij is the efficiency of detector i for neutrons detected in 
time channel j, and IBM and ηBM are respectively the counts and the efficiency of the 
beam monitor (situated upstream of the sample). 
 
Since we are not trying to extract an absolute cross section we can neglect the 
multiplicative constants in the above equation, but we should not ignore the detector 
efficiency function ηij. Since all of the detectors are to first order identical it is not 
unreasonable to treat ηij as the product of two terms, a function ηi0 which represents the 
efficiency of detector i for elastically scattered neutrons and a detector-independent 
function fj that describes the energy dependence of the efficiency of the detectors. The 
correction for differences in detector response, i.e. the determination of ηi0, is performed 
using the results of a measurement with a vanadium sample. 
 

Where does the time independent background come from? 



The correction of the data for the energy dependence of the efficiency is achieved by 
calculation, knowing the various factors that affect the probability that a neutron is 
absorbed within a detector. 

 
To improve statistics we sometimes define several detector “groups”, each of which 
includes detectors within a specified range of angles. The differential cross section 

2[d / d dt]σ Ω  for all detectors in a group will be summed and divided by the number of 
detectors in the group. Having obtained a quantity proportional to 2[d / d dt]σ Ω  we must 
now compute 2[d / d d ]σ Ω ω  and finally incS (Q, )ω . Since a neutron’s energy E is related to 
its time-of-flight t over a fixed distance as 2E t−∝ , it follows that 3dE t dt−∝ . Hence 
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To obtain incS (Q, )ω we simply divide by kf (see eq. 1). Equivalently we multiply by 
another factor of t. 

 
If a system in thermodynamic equilibrium can exist in a number of thermodynamic states 
and we consider two such states separated by an energy difference ω, the probability 
that the system is in the lower energy state is greater by a factor exp( / kT)ω  than the 
probability that it is in the higher energy state.  From this it can be shown that for systems 
in thermodynamic equilibrium the scattering function incS (Q, )ω  satisfies the so-called 
“detailed balance” relationship: inc incS ( Q, ) exp( / kT)S (Q, )− −ω = − ω ω . Since we shall 
be fitting the data to a theoretical form that is symmetric in ω we shall first 
“symmetrize” the experimental incS (Q, )ω  by multiplying it by exp( / 2kT)− ω . 

 
Having reduced the experimental data to a symmetrized scattering function it is time to 
interpret those results. 
 

V. Theory 
 
A common way of expressing incS (Q, )ω  is in terms of the intermediate self scattering 

function sI (Q, t) , which is the space Fourier transform of the time-dependent pair 
distribution function sG (r, t) : 

What are these factors? Can you write an expression for the efficiency of a 
detector, assuming its cross section is rectangular? 

Is symmetrization of incS (Q, )ω  likely to be a larger effect at low or high 
temperatures? 
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An illustrative model for sG (r, t)  (though inappropriate in the context of the present 
experiment) is that of simple Brownian diffusion, where times of observation are much 
longer than typical times between collisions. Fick’s Law governs this type of diffusion: 

 2
s sG (r, t) D G (r, t)
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where D is the diffusion constant. A solution to this equation is given by a self-
correlation function of the form 
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the space Fourier transform of which is 
 2

sI (Q, t) exp( Q Dt)= − . (8) 
Since this represents an exponential decay in time, the time Fourier transform yields a 
Lorentzian lineshape: 
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that is centered at zero energy transfer and has a full width at half maximum height 
(FWHM), Γ, given by 

 22DQΓ = . (10) 
 
In the current situation, we should distinguish two types of water motion: rotational and 
translational. This can be described as a convolution of the rotational [ Sinc

rot (Q,ω)] and 
translational [ Sinc

trans(Q ,ω )] scattering functions with an overall Debye-Waller factor, 
convoluted with the instrumental resolution, R: 

 Sinc(Q,ω) = e
−
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VI. Data analysis 
 
We will take a few detours on the route to obtaining a symmetrized form of the 
experimental scattering function, incS (Q, )ω . 
 
The next step will be to fit the incS (Q, )ω  data in the tunneling regime as a function of Q. 
We suggest that you try fitting each Q group to a series of phenomenological Lorentzians 
and possibly a background function, and then extract the fitted parameters. 



Energy Transfer (meV) 
 

 
Figure 2.  
Representative QENS data fit to a broad and narrow Lorentzian function, representing the 
rotational and translation components of the water molecules, and a background function. 
 
If you have taken data at higher temperatures, use the isotropic rotational diffusion model 
described in the previous section (i.e. an elastic delta function and just one broader 
Lorentzian) to fit the ‘empty sample’ background subtracted data as a function of Q. In an 
actual experiment the scattering function is broadened with the instrumental resolution 
function so the model function must be numerically convoluted with the instrumental 
resolution function. Having fitted the experimental data to the model, the next step is to 
make plots of the Lorentzian line parameters as functions of Q.  

 
 

VII. Concluding remarks 
 
In section V we discussed a scattering function that corresponds to a very simple model 
of rotational and translational diffusive motions. The situation can be more complicated 
when a system displays multiple types of reorientational motion, or more than one 

(1) How well does the single Lorentzian fit? 
(2) How do the Lorentzian parameters behave? 
(3) Can you extract a diffusion constant or correlation time? 
(4) If you have access to data at other temperatures, can you extract an activation 

energy? 

‘Rotation’ 

‘Translation’ 



rotational axis. If the various motions are uncoupled, the intermediate scattering function 
is a product of the individual intermediate scattering functions so that the scattering 
function is a convolution of the scattering functions for the individual motions, as we 
have seen. The situation simplifies considerably if additional motions occur on very 
different time scales. Motions that are much slower than the time scale represented by the 
instrumental resolution show up as elastic scattering. On the other hand motions that are 
much faster give rise to an essentially flat background. Different instruments, with 
different dynamical windows and different resolution capabilities, are needed to observe 
such motions. For example motions that are too slow to see using the DCS may well 
show up if the sample is put on the backscattering spectrometer. Conversely motions that 
are fast by DCS standards can usefully be studied using the FANS spectrometer. 
 
This experiment was initially performed on the DCS (C. Malardier-Jugroot, M. E. 
Johnson, R. K. Murarka and T. Head-Gordon, Phys. Chem. Chem. Phys. (2008) 10, 4903) 
with addition information and figures courtesy of Cecile Malardier-Jugroot. 
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 Appendix A. Instrument Characteristics for the Disk Chopper Spectrometer 

(http://www.ncnr.nist.gov/instruments/dcs) 
 
The white beam from the cold neutron source is cleaned of high energy neutron and 
gamma ray contamination using an “optical filter”. This is basically a bent guide which 
ensures that there is no line of sight from the source to points beyond the local shutter.  A 
cooled graphite filter removes short wavelength (~0.5 Å) neutrons that remain in the 
beam, permitting measurements at wavelengths down to roughly 1.5 Å. 
 
A clean, pulsed, monochromatic neutron beam is produced using seven disk choppers. 
Chopper speeds may be varied from 1200 to 20000 rpm. The pulsing and 
monochromating choppers have three slots of different widths. In principle this permits 
three choices of intensity and resolution at a given wavelength and master chopper speed.  
 
The measured intensity at the sample is reproduced below. Red and blue points (upper 
and lower plots) correspond to measurements using different chopper slot widths. 

 

 

Why are there dips in the measured flux at wavelengths near 3.335 and 6.67 Å?  
What’s going on around 2 Å? 



The resolution of the instrument is approximately triangular and essentially independent 
of beam height (10 cm) but depends on the width of the beam. Hence samples should 
ideally be tall and thin rather than short and fat. 
 
The measured elastic energy resolution, for the same choices of chopper slot width as in 
the intensity plot above, is shown in the figure below. Lines represent fits to the 
measurements.             

 
An oscillating radial collimator, inside radius 200 mm, outside radius 300 mm, blade 
separation 2°, is used to reduce the scattering from sample environment structures. 
 

 
There are 913 six atmosphere 3He detectors covering an essentially continuous solid 
angle of ~0.65 steradians and arranged in three banks: 
 Middle bank detector scattering angles range from -30° to -5° and from +5° to +140° 
 Upper and lower bank angles range from -30° to -10° and from +10° to +140° 

 
The flight distance from sample to detectors is 4010 mm. The flight chamber is purged 
with argon. 

Can you explain how the radial collimator works, and why it is 
oscillated? 

Why is the flight chamber purged with argon? 



 

Appendix B. Possible Experiments on the Disk Chopper Spectrometer 
 
Phenomena that can be investigated include: 
 Translational and rotational diffusion processes, where scattering experiments 

provide information about time scales, length scales and geometrical constraints; the 
ability to access a wide range of wave vector transfers, with good energy resolution, 
is key to the success of such investigations 

 Low energy vibrational and magnetic excitations and densities of states 
 Tunneling phenomena 
 Low Q powder diffraction 

 
Research areas include: 
 Chemistry --- e.g. clathrates, molecular crystals, fullerenes 
 Polymers --- bound polymers, glass phenomenon, confinement effects 
 Biological systems --- protein folding, protein preservation, water dynamics in 

membranes  
 Physics --- adsorbate dynamics in mesoporous systems (zeolites and clays) and in 

confined geometries, metal-hydrogen systems, glasses, magnetic systems 
 Materials --- negative thermal expansion materials, low conductivity materials, 

hydration of cement, carbon nanotubes, proton conductors, metal hydrides 

 

Appendix C. Some useful properties and relationships 
 

Neutron properties 
 
Mass:   1.660×10-24 g 
Electric charge: 0  
Spin:   ½ 
Magnetic moment: -1.913 nuclear magnetons 
 
Exact relationships 
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Approximate relationships 
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Appendix D. Spin Incoherence 
 
The strength of the scattering of a neutron by a nucleus, i.e. the neutron scattering length,  
depends on the spin of the compound nucleus. For an isotope with nuclear spin I the 
combined “nucleus + neutron” spin, I′, has two possible values, I+ = I+1/2 and I− = I-1/2, 
with which we associate two possible scattering lengths b+ and b−. Each of the possible 
values of the combined spin has 2I′+1 possible spin states, i.e. 2(I+1/2)+1 = 2I+2 and 
2(I-1/2) +1 = 2I states respectively, for a total of 4I+2 spin states. 
 
If the neutron and nuclear spins are randomly orientated, all states are equally probable, 
and the probabilities of the combined + and - spin states are p+ = (I+1)/(2I+1) and 
p−=I/(2I+1) respectively. 
 
The mean scattering length, <b>, and the mean of the scattering length squared, <b2>, 
 

           <b> = p+b+ + p−b−      and     <b2> = p+(b+)2 + p− (b−)2 

 
are used to calculate the coherent and incoherent bound cross sections. These cross 
sections are defined as follows: 

             2
coh 4 bσ = π   and ( )22

inc 4 b bσ = π − . 
Working through the numbers for hydrogen and deuterium is instructive. The relevant 
scattering lengths for hydrogen are b+ = 1.086×10-12 cm and b− = -4.751×10-12 cm, 
whereas the values for deuterium are b+ = 0.951×10-12 cm and b− = 0.095×10-12 cm.  
 
 
 
 


