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Figure 1:  Magnetic field dependent resistivities for a series of Fe/Cr superlattices1 - a 

sample of the work that led to the 2007 Physics Nobel Prize.

In the late 1980’s research groups led by Albert Fert and Peter Grünberg  found that 

structures composed of of a few atomic layers of Fe separated by a few atomic layers of Cr 
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could exhibit extremely large changes in electrical resistivity in response to relatively 

small  changes in magnetic field.2  Fert coined the term “Giant Magnetoresistance” 

(GMR) to describe this phenomenon,  and applications for GMR were recognized imme-

diately.  Within a decade, commercial computer hard drives were employing GMR to 

achieve unprecedented information storage densities.  Thus, the discovery of GMR revo-

lutionized magnetic data storage and earned the 2007 Nobel Prize in Physics for Fert and 

Grünberg.

What’s special about Fe/Cr superlattices?

Figure 1 shows some of Fert’s groundbreaking magnetoresistance measurements on a 

series of Fe/Cr superlattices.  At a temperature of 4.2 K, we can that the resistivity of a 

series of Fe/Cr superlattices drops drastically when just a few kG of magnetic field is ap-

plied.   So, why is it that the electrical resistance of Fe/Cr superlattice structures is so 

sensitive to magnetic fields?  Specifically, why is the low field resistance so high?  The an-

swer is well known, but in the spirit of the recent Nobel award, we will perform a polar-

ized neutron reflectometry (PNR) experiment that will clearly illustrate the special prop-

erties of Fe/Cr superlattices that lead to GMR.  PNR is well suited for studying this type 

of system, as it is sensitive to the depth-dependent vector magnetization (moment per 

unit volume) and the depth-dependent nuclear profile of  thin film structures. 

Polarized Neutron Reflectometry

For a detailed treatment of neutron reflectometry, see The Theory of Small Angle Neu-

tron Scattering and Reflectometry by Andrew Jackson, which has been provided for you, 

and for polarized neutron reflectometry in particular, see the chapter by Fitzsimmons and 

Majkrzak in Modern Techniques for Characterizing Magnetic Materials 3 (available online 

at http://www.ncnr.nist.gov/instruments/ng1refl/Fitz.pdf) .  In short, neutron reflec-

tometry can measure the depth dependent scattering length density of thin film struc-

tures.  Scattering length density, typically reported in units of Å-2, is a mathematically 

convenient quantity for those working in neutron scattering, but it may seem a bit un-

usual to those new to the technique.  Crudely speaking, scattering length density is a 
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measure of of the scattering power of a material.   For a given compound, the nuclear 

component of the scattering length density is

(1)  ρnuc(z)  = ∑i bi∙N,

where b  is the characteristic neutron scattering length of  a given element (these values 

are known - see http://www.ncnr.nist.gov/resources/n-lengths/), N is the number of 

“molecules” of the compound per unit volume, and the summation is over each element 

in the compound.  This component of the scattering comes from the interaction between 

the neutron and the constituent nuclei of the sample, and therefore is indicative of a ma-

terial’s chemical composition.  Additionally, because the neutron has a magnetic mo-

ment, there is also a magnetic component of the scattering length density which is di-

rectly proportional to the sample magnetization M(z) 

(2)  ρmag(z) = (2.853 x 10-9 cm3•emu-1•Å-2)M,

for M in units of emu∙cm-3.  The utility of polarized  neutrons is that they allow us to dis-

tinguish between the nuclear and magnetic components of the scattering length density.  

Using the formalism that + corresponds to neutron spin parallel to a magnetic field H, 

and - corresponds to neutron spin anti-parallel to H, we are interested in four polarized 

neutron cross sections.  The non spin-flip (incident and scattered neutrons have the same 

polarization)cross sections R- - and R++ are dependent on the nuclear depth profile, and 

the depth profile of the component of M(z) parallel to H.  The spin-flip cross sections R - 

+ and R -+ are purely magnetic in origin, and are dependent on the depth profile of the 

component of M(z) perpendicular to H.   A schematic of the PNR geometry is shown in 

Figure 2.  
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Figure 2:  Illustration showing the geometry of polarized neutron reflectometry.

Experimental Apparatus

For our PNR measurement, we will use the NG-1 Polarized Beam Reflectometer at the 

NIST Center for Neutron Research.   Figure 3 shows the beamline.  A pyrolytic graphite 

[002] triple crystal monochromator intercepts a polychromatic cold neutron beam, and 

reflects a monochromatic beam (wavelength λ = 4.75 Å) down the beamline.  Moving 

downstream, an Fe/Si supermirror is used to spin polarize the neutron beam.  The mag-

netic field of the supermirror aligns the neutrons’ spin along an axis normal to the floor, 

and it’s special layer structure causes  one spin state (spin-up) to be reflected out of the 

beamline, while the other spin state (spin-down) is transmitted towards the sample.  After 

the supermirror is a “Mezei” spin flipper, which consists of windings of aluminum (essen-

tially transparent to neutrons) wire.  When electrical current flows through the wires, the 

a magnetic field is produced that flips the neutron spin by 180〬, thus allowing the user 

the choice of spin-up or spin-down neutrons.  The sample is inside the aluminum tail-

piece of “displex” refrigerator mounted in an electromagnet, which is attached to a ro-
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tatable sample table.  On the downstream side of the sample is the detector arm, which 

houses another Mezei flipper / supermirror analyzer assembly followed by a narrow 

“pencil” neutron detector.  Like the polarizer, the analyzer supermirror transmits only 

spin-down neutrons, thus the downstream assembly allows for measurement of all 4 po-

larization cross-sections (- -, +-, -+, and ++).     

Figure 3:  Elements of the NG1 Polarized Neutron Reflectometer.

Experiment

Our sample is a 1x1 cm Fe/Cr superlattice, provided by Dr. Shah Valloppilly of the Indi-

ana University Cyclotron Facility.  The sample consists of :  45 Å TiO / 14 Å Ti / [15 Å 

Cr / 38 Å Fe]10 on a MgO substrate.  For our experiment we will use PNR to measure the 

magnetic depth profile of the sample at 45 G (we cannot measure in true zero field, as we 

need some small field to guide the neutrons ) after cooling the sample in zero field to 5 K. 

The sample’s layer composition, thickness, and roughness, have already been determined 

using x-ray reflectometry.  So, if we make a few more assumptions, we can guess at what 

the PNR spectra from the sample will look like.  Let’s assume that the TiO, Ti, and MgO 

layers are non-magnetic (not a stretch), the Cr layers while magnetically ordered as a spin 

density wave (another Nobel Prize!4 ) have no net  magnetization, and that the Fe layers 

are ferromagnetic with M = 1750 emu/cc (typical of Fe). We can then calculate the mag-

netic scattering length density for the Fe layers from equation 2.
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 Further, let’s assume that the easy magnetic axis happens to be 45° away from our neu-

tron polarization direction, so that after cooling in zero field, the magnetization vectors of 

the Fe layers have components both parallel and perpendicular to the neutron spin.  We 

can also make reasonable guesses for the nuclear scattering length densities.  The NCNR 

maintains a handy online calculator (http://www.ncnr.nist.gov/resources/sldcalc.html) 

that calculates ρnuc  from a compound’s mass density (the calculator “knows” the nuclear 

scattering lengths and atomic masses of the elements).    The important quantities for 

simulating the PNR spectra from our sample are shown in Table 1.  

compound t (Å) ρnuc (10-6 Å-2) ρmag (10-6 Å-2) angle between 
H and M (deg)

TiO 45 1.1 0 0

Ti 14 -1.95 0 0

Cr 15 3.03 0 0

Fe 38 8.02 5 45

MgO substrate 5.98 0 0

Table 1:  Layer dependent properties for our simulation.  Note that these are guesses 

- the real parameters you measure (especially the magnetic ones) may vary.  The Fe 

and Cr layers (light blue) are repeated ten times.

From the values in table 1, we can use the Reflpol PNR fitting and calculation software to 

guess at what the PNR spectra from our sample might look like.  The simulation is shown 

in Figure 4, with  R+ + is in orange, R - - is in blue, and R + - = R -+ is in green.  Note that 

the R+ + and R - - cross sections are different - due a component of the sample magnetiza-

tion parallel to the neutron spin.  Also note that we see significant scattering in the R - + 

and R+ - cross sections - due to an in-plane magnetization component perpendicular to 

the neutron spin.  Finally, note the large peak in all of the cross sections at Q  ≈ 0.12 Å-1.  

This is known as the superlattice Bragg position, and it corresponds to the repeat thick-

ness of the Fe and Cr,  Q  ≈ 2π  / (15 Å + 38 Å).  These are key features in the PNR spectra 
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that we will be quick to take notice of when we perform our experiment.  If the measured 

spectra look similar, we’ll know that our initial guess was close to correct, and some quick 

data fitting will be all that is needed to flesh out the details of the sample profile.  How-

ever, if the spectra are grossly different, we will immediately know something interesting 

is afoot...

R++   

R- -

R-+ = R+-

Figure 4:  Simulated PNR spectra for our sample.
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