Probing 3-D Orientation in Templated Self-Assembly using Rotational SANS

Ronald L. Jones

NIST Polymers
Brian Berry
Kevin Yager
Xiaohua Zhang
Gus Bosse
Sangcheol Kim
Jack Douglas
Alamgir Karim
Wen-li Wu

NCNR Collaboration
Paul Butler
Sushil Satija
Brian Maranville
Chuck Majkrzak

Outside Collaborations
Prof. Hiroshi Jinnai – KIT
Ken-ichi Nihara – KIT
Tom Albrecht – Hitachi Data Storage
Seth Darling – CNM/Argonne Nat’l Lab
Robert Briber – U. Md.
Ho-Cheol Kim – IBM Almaden
Grant Willson – U. Texas at Austin
CNMS/Oak Ridge National Lab (J. Mays)

http://polymers.msel.nist.gov
Templated Self Assembly of Block Copolymers

Challenges

• Difficult to “see” below the top surface

• Other applications will focus on complex 3-dimensional structures (Nanostructured membranes for energy applications, hierarchical assembly)

SANS vs. NR of Thin Films

Small Angle Neutron Scattering
- Measures structure parallel to the substrate
- Substrate must be neutron transparent with low adsorption, no SANS structure
- Optimal film thickness is on the order of mm’s, but 10 nm is possible.
- Analysis is performed in the limit of the Born Approximation
- Q vector is relative to beam only, substrate plane is irrelevant.

Specular Neutron Reflectivity
- Measures structure perpendicular to the substrate
- Substrate is smooth and flat, has relatively high scattering length density
- Characterization becomes challenging as film thickness > 200 nm.
- Limit of high interaction at low angle to limit of Born Approximation at very high angles
- Q vector is effectively defined by substrate plane.

SANS + NR together can provide parallel vs. perpendicular orientation map
Rotational Small Angle Neutron Scattering

- We convert from beam-coordinates \((q_x, q_y, q_z)\) to sample-coordinates \((Q_x, Q_y, Q_z)\) using a rotation matrix

\[
\begin{align*}
Q_x &= q_x \cos \omega - q_z \sin \omega \\
Q_y &= q_y \\
Q_z &= q_x \sin \omega + q_z \cos \omega
\end{align*}
\]
Rotational Small Angle Neutron Scattering

a) For each ω:
 - Get SANS image
 - Box average q_x

b) Assemble the 1D slices:

c) Convert to sample reciprocal space

http://polymers.msel.nist.gov
Normalization of Scattering Volume

Path Length increases as sample is rotated

Implications:
1. Sample area measured is not constant
2. At high angles, reflection will no longer be negligible
3. Sample volume is increasing and must be normalized

Use invariance of \(I(qy) \) to normalize path length changes
Scattering Volume Normalization

http://polymers.msel.nist.gov
Lets look at a sample – Templated Assembly

BCP-filled Template as cast

dPS-b-PMMA
Lamellar Forming Morphology
Forms domains of approx. 20 nm size
Repeat period approx. 40 nm

BCP-filled Template after anneal @ T=160C for 1 hr

Diffraction Spots from template

Diffraction Spot from aligned BCP

Unaligned BCP

http://polymers.msel.nist.gov
"Top" and "Side" views from R-SANS

Normal Incidence (Qx-Qy plane) Cross Section (Qx-Qz plane)
Templated Lamellae – 35 minutes

Temperature Data Born Approximation Model

Vertical Lamellae

Horizontal Lamellae

Experimental Data

Born Approximation Model

Vertical Lamellae

$A_v = 0.42$

$s_v = 0.76$

$A_h = 4.0$

$s_h = 0.98$

http://polymers.msel.nist.gov
Templated Lamellae – 8 hours

Experimental Data

Born Approximation Model

$A_v = 0.20$
$s_v = 0.84$
$A_h = 3.5$
$s_h = 0.98$

http://polymers.msel.nist.gov
Neutron Reflectivity of Templated Assembly

XR techniques developed by Hae-Jeong Lee et al.
Kinetics of Ordering Lamellae

Problem: Need to fill in missing “wedge” of data for more accuracy.
“Invariant” Scattering – $I(qy)$

Scattering volume
- 20min
- 35min
- 1hr
- 2hr
- 3hr
- 8hr
- 72hr

Sample rotation ω (degrees)

Relative intensity

Short Anneal

Long Anneal

http://polymers.msel.nist.gov
Final Thoughts

Rotational SANS
• Developing Integral Equation model to describe $I(q)$ for all rotation angles
 • Wen-li Wu

• Filling in “Missing Wedge” with Off-specular Neutron Reflectivity
 • Brian Maranville, Sushil Satija, Chuck Majkrzak

• Striving to assess the role of dynamic scattering, substrate waveguiding, etc. to create quantitatively accurate models

• Potential to utilize the enhanced transmission scattering to measure confined systems with low S/N