Neutron Spin Echo

NCNR Summer School on Methods

and Applications of Neutron Spectroscopy June 25-29, 2007

Neutron Spin Echo Team

Jason S Gardner Antonio Faraone Michihiro Nagao

Neutron Spin Echo Team

Jason S Gardner Antonio Faraone Michihiro Nagao

Larry Kneller

Special Guest Maikel Rheinstädter (Missouri)

NIST

Center for Neutron Research

NCNR Summer School, June 2007

SPIN ECHO PRINCIPLE

Neutrons posses spin and magnetic moment. They precess in magnetic fields with the Larmor frequency that depends on the strength of the magnetic field only. ($g = 1.83 \times 10^8 \text{ s}^{-1}\text{T}^{-1}$)

$$\varphi = 0$$

$$\varphi = \pi$$

$$\varphi = gB(L/v)$$

The neutron spin (S)
experiences a torque
(N) from a magnetic
field (B) perpendicular
to its spin direction

SPIN ECHO PRINCIPLE

Sample position

flipper (π or $\pi/2$)

π/2 flipper in front of the detector

Echo-point+

NSE Results

GOOD LUCK AND ENJOY

