Shape fluctuations of a spherical surfactant shell in a microemulsion

Antonio Faraone, Jason S. Gardner, and Michihiro Nagao

Summer School on Methods and Applications of Neutron Spectroscopy

June 25-29, 2007

NIST Center for Neutron Research Gaithersburg, MD 20899

Surfactant molecules

*Oils and water do not mix! Why? Water is a polar liquid, ε = 81; Oils are non polar, ε ~ 2

A surfactant ("Surface Active Agent") is soluble both in water and in organic liquids (oils)

Surfactant aggregates in water

When surfactants are dissolved in water they:

- reduce the surface tension because they are adsorbed on the surfaces
- form variety of aggregates micelles, lamellae, bicelles, vesicles, etc

Surfactants are everywhere

Surfactants are very useful to:

- Reduce the interfacial tension
- Solubilize oils in water
- Stabilize liquid films and foams
- Modify the interparticle interactions
- Stabilize dispersion
- Modify the contact angle and wetting

•

Surfactants are everywhere II

Surfactants in our daily life:

- Cosmetics moisturizers, lotions, healthcare products, soap, ...
- Food mayonnaise, margarine, ice cream, milk, ...
- Industry lubricants, stabilizers, emulsifiers, detergents, ...
- Medicine drugs, bio applications, ...
- Agriculture aerosols, fertilizers, ...
- •

Micelles and Microemulsions

Oils and water do not mix?!? The surfactants help them mix.

When surfactants are dissolved in oils they form "inverse" micelles, ...

Microemulsion Properties

- Thermodynamically stable, isotropic, and optically transparent solutions
- The diameters range between 2 and 50 nm

Properties of the surfactant film

Surfactant film

Properties of the surfactant film change with:

- Molecular structure
- Additives
- Ionic strength
- Co-surfactant
- Temperature, pressure etc.

Properties of the surfactant film:

• Interfacial tension

• Spontaneous curvature

• Bending elasticity

• Saddle splay elasticity

Helfrich Free Energy

$$E = \int \left[\gamma + \frac{k}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} - \frac{2}{R_s} \right) + \frac{\overline{k}}{R_1 R_2} \right] dS$$

Microemulsion: How to study them

Structure

- Light Scattering
- Small Angle Scattering (Neutrons: SANS; x-rays: SAXS)
 - Large length scales (10 Å-1000 Å)
 - 'Low resolution diffraction technique'

SANS:

The intensity is the FT of the contrast distribution.

Contrast: Difference in Scattering Length Density

$$\rho = \frac{d}{M_w} N_A \sum_i b_i^{coh}$$

Contrast Matching Technique

Microemulsion: How to study them

Dynamics

Microemulsions move in solution because of thermal energy.

- Diffusion
- Shape fluctuations

Experimental techniques:

- Dynamic Light Scattering
- Nuclear magnetic resonance
- Neutron Spin-Echo (NSE)

NSE: T scale $\sim 0.01 - 100 \text{ ns}$, L scale 1 - 100 Å

Neutron Spin-Echo Spectroscopy

- Achieves the highest energy resolution (100 ns ~ 0.02 μeV) among all neutron spectrometers by encoding neutron's individual velocity into their spins.
- NSE spectrometers work in the time domain.
- NSE measures the scattering length density fluctuations (corresponding to the SANS pattern).
- NG5-NSE is today the only NSE spectrometer operating in US.

NCNR Neutron Spin-Echo Spectrometer: NG5-NSE

Experimental

Shape fluctuations in AOT/water/hexane microemulsion

$$\begin{array}{cccc} & \text{CH}_2\text{CH}_3 & \text{O} \\ & \text{CH}_3\text{CH}_2\text{CH}_2\text{CH} & \text{CH}_2\text{O} - \overset{||}{\text{C}} - \text{CH}_2 \\ & \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH} & \text{CH}_2\text{O} - \overset{||}{\text{C}} - \overset{||}{\text{CHSO}_3}\text{Na} \\ & \text{CH}_2\text{CH}_3 & \overset{||}{\text{O}} \end{array}$$

Inverse Microemulsion droplet

- ·Translational Diffusion
- Shape Fluctuations

SANS data

	$\sigma_{\rm S}$ (barn)	b ^{coh} (fm)	b ^{incoh} (fm)
Н	82.03	-3.741	25.274
D	2.05	6.671	4.04

 SLD (×10-6 Å-2)

 n-hexane
 -0.67

 H_2 O
 -0.56

 d-hexane
 6.14

 D_2 O
 6.35

 AOT
 0.10

$\mathbf{AOT/D_2O/C_6D_{14}}$

Vol. fraction 0.078

Avg. radius (Å) ~ 30

polydispersity ~ 0.2

Data Analysis: Diffusion

Fick's Law, Diffusion Equation

$$\frac{\partial \phi}{\partial t} = -D\nabla^2 \phi$$

$$I(Q,t) = \exp\left[-DQ^2t\right]$$

NSE measures coherent dynamics.

- The diffusion coefficient measured is the collective diffusion coefficient.
- At finite concentration inter-particle interactions make the measured (effective) diffusion coefficient Φ and Q dependent: $D_c(\Phi,Q)$.
- In the limit of infinite dilution the diffusion coefficient coincides with the self diffusion coefficient.

Data Analysis: Shape Fluctuations

$$E_{bend} = \frac{k}{2} \int dS \left(\frac{1}{R_1} + \frac{1}{R_2} - \frac{2}{R_s} \right) + \overline{k} \int dS \frac{1}{R_1 R_2}$$

Expansion of *r* in spherical harmonics with amplitude *a*:

$$r(\Omega) = r_0 \left(1 + \sum_{l,m} a_{lm} Y_{lm}(\Omega) \right)$$

Frequency of oscillations of a droplet:

$$\lambda_2 = \frac{k}{\eta R_0^3} \left[4 \frac{R_0}{R_s} - 3 \frac{\overline{k}}{k} - \frac{3k_B T}{4\pi k} f(\phi) \right] \frac{24\eta}{23\eta' + 32\eta}$$

Data Analysis III

Translational Diffusion
$$\longrightarrow \frac{I(Q,t)}{I(Q,0)} = \exp[-DQ^2t]$$

$$AOT/D_2O/C_6D_{14}$$
 Microemulsion $\longrightarrow \frac{I(Q,t)}{I(Q,0)} = \exp\left[-D_{eff}(Q)Q^2t\right]$ Translational Diffusion + shape fluctuations

The two dynamical processes are statistically independent.

$$D_{eff}(Q) = D_{tr} + D_{def}(Q)$$

$$5\lambda_{2} f_{2}(QR_{0}) \langle |a_{2}|^{2} \rangle$$

$$D_{eff}(Q) = D_{tr} + \frac{5\lambda_{2} f_{2}(QR_{0}) \langle |a_{2}|^{2} \rangle}{Q^{2} \left[4\pi \left[j_{0}(QR_{0}) \right]^{2} + 5f_{2}(QR_{0}) \langle |a_{2}|^{2} \rangle \right]}$$

$$f_2(QR_0) = [4j_2(QR_0) - QR_0j_3(QR_0)]^2$$

The goal is the bending modulus, k

$$D_{eff}(Q) = D_{tr} + \frac{5\lambda_2 f_2(QR_0) \langle |a_2|^2 \rangle}{Q^2 \left[4\pi [j_0(QR_0)]^2 + 5f_2(QR_0) \langle |a_2|^2 \rangle \right]}$$

$$k = \frac{1}{48} \left[\frac{k_B T}{\pi p^2} + \lambda_2 \eta R_0^3 \frac{23\eta' + 32\eta}{3\eta} \right]$$

 λ_2 – the damping frequency – **frequency of deformation** $<|a|^2>$ – mean square displacement of the 2-nd harmonic – **amplitude of deformation** p^2 – size polydispersity, measurable by SANS or DLS η and η ' are the solvent and core viscosities

