Diffraction <-> Structure

- First Born Approximation: (from quantum mechanics) Scattering is weak, so scattered amplitude is Fourier Transform (F.T.) of structure (spatial distribution of neutron scattering length density).
- In 1-dimension across membrane:

 $\rho(x) = F.T. \{F(Q)\}$ (scientist's job)

 $F(Q) = F.T. \{\rho(x)\}$ (scattering process)

 $Q = 4\pi Sin(\theta)/\lambda$ or $Q = 2\pi n/d$ Bragg Equation: $n\lambda = 2dSin(\theta)$ d = repeat distance (across membrane). Q = dimension in reciprocal space.

Fourier Transform for calculating diffraction from Molecular Model (Centrosymmetric case of bilayer. Need Sine part as well if not centrosymmetric.)

 $F_n = \sum_j b_j Cos(2\pi n x_j/d) \exp(-n^2 B_j/4d^2)$

b_j = neutron coherent scattering length of nucleus j
 b(hydrogen) = -3.74 x10⁻¹³cm

 $b(deuterium) = 6.67 \times 10^{-13} cm$

 $b(carbon) = 6.65 \times 10^{-13} cm$

 $b(oxygen) = 5.80 \times 10^{-13} cm$

 $b(nitrogen) = 9.40 \times 10^{-13} cm$

(compare X-ray scattering by electron: $s.l. = 2.8x10^{-13}cm$)

- B_j = Debye-Waller Temperature Factor: nucleus not fixed at x_i but has Gaussian distribution at x_i.
- B_i includes dynamic and static disorder.

<u>Measured Intensities</u>: $I_n \sim |F_n|^2$

Phase relations of F_n not included in measurement of intensity.

Must be recovered: "the phase problem".

Geometric corrections:

 $|\mathsf{F}_{\mathsf{n}}|^2 = \mathsf{I}_{\mathsf{n}} \operatorname{Sin}(2\theta_{\mathsf{n}}) \operatorname{C}_{\mathsf{abs}}(n)$

 $Sin(2\theta_{y}) = Crystallographic Lorentz factor$ (for Bragg peaks integrated in θ). Lorentz factor is $Sin(\theta_n)$ if integrated in Q.

 I_n are corrected for absorption. A small correction for thin samples.

 $C_{abs}(n) = z/(1-exp(-z))$ where $z = 2t/tosin\theta$ to = 1/e absorption length

The Shannon Sampling Theorem

Claude Shannon (1949) Proc. Inst. Radio Engrs. NY, **37**, 10 Shannon & Weaver (1949) The Mathematical Theory of Communication. Univ. of Illinois Press.

If a function $\rho(x)$ is non-zero only for $-a/2 \le x \le a/2$, then its Fourier Transform F(X) is completely specified by its values at X = 0, ±1/a, ±2/a,... etc.

The continuous F(X) can be obtained as a sum of $sin(\pi aX)/\pi aX$, placed at each of the above points and weighted by the value of F(X) at each point. Note that amplitude and phase of F(X) are needed.

Corollary: Data to Q_{max} are completely specified by a small number of values, namely a Q_{max} / π .

The Shannon Sampling Theorem can also apply to SANS.

Specifically, SANS data from solutions of objects of finite dimension. In this case, F.T. $\{I(Q)\}$ yields the pair distribution function p(r). But since this is a truncated FT, better to generate p(r) as a series summation until its FT fits I(Q). The number of terms in the series is given by Shannon Theory.

See P.B. Moore, "Small-Angle Scattering. Information Content and Error Analysis", J. Appl. Cryst. (1980) **13**, 168-175.

Peter Moore's program for generating p(r) from I(Q) is extensively used in SANS, especially in biology.

Calculate density of neutron scattering lengths:

 $\rho(\mathbf{x}) = \sum_{n} |\mathbf{F}_{n}| \cos(2\pi n \mathbf{x}/d - \phi_{n})$ Bilayer membrane is centrosymmetric, so use cosine F.T. and $\phi_{n} = 0, \pi$.

Or,
$$\rho(\mathbf{x}) = \sum_{n} F_{n} \operatorname{Cos}(2\pi n \mathbf{x}/d)$$

 $F_{n} = + |F_{n}|, \phi_{n} = 0$
 $F_{n} = - |F_{n}|, \phi_{n} = \pi$

Solving the Phase Problem

- Introduce heavy atom in the form of deuterium (D₂O) at x = 0, by diffusion from vapor.
- At low hydration (e.g. ~60%rh), D₂O should be narrow Gaussian at x = 0. F.T.{D₂O} = <u>all positive values</u>.

- Narrowest case: Dirac delta function. F.T.{ $\delta(0)$ } = positive constant.

Fourier Transforms are linear operations:

 $F.T.{lipid+D_2O} = F.T.{lipid} + F.T.{D_2O}$

- So, D_2O at x = 0 increases $|F_n|$ for positive F_n and decreases $|F_n|$ for negative F_n . Can simply observe if I_n increase or decrease : gives phases.
- F_n can change from negative to positive, but 3 measurements will show this (H₂O, 50%D₂O, D₂O) since F_n is linear in %D₂O.
- This is the membrane version of the multiple isomorphous heavy atom method of protein X-ray crystallography.

Neutron Scattering Length Density Profile. DMPC + Cholesterol (2/1). 86%rh. d=53.00 12 - 12.2 - 11.8 -7.3 1.3 Ο - 1.15 -2.66 0 0 .92 Ο

----- 53.0Å -----