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Abstract

Using elastic and inelastic neutron scattering with a triple-axis spectrometer, we will study

the ferromagnetic transition in a perovskite La0.7Sr0.3MnO3 and its spin wave excitations due to

cooperative fluctuations of ordered spins. This experiment will give us an opportunity to learn

basic principles of triple-axis spectroscopy, and at the same time will demonstrate that neutron

scattering is an excellent probe to study static and dynamic magnetic correlations in condensed

matter systems.
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Objectives

1. To understand what is measured in a neutron inelastic scattering experiment.

2. To gain a basic understanding of the principles of Triple-Axis Spectroscopy (TAS).

3. To learn how to analyze the TAS data obtained to extract physical information about

the system being studied.

4. To observe the ferromagnetic phase transition in the perovskite La0.7Sr0.3MnO3, and

study the cooperative fluctuations of the ordered spins.

I. INTRODUCTION

For years, magnetic media have been the basis for storing information in the computer

industry. The information is stored in the form of bits which are read by magnetic read heads.

These magnetic read heads work by displaying a small change in their electrical resistivity

as they pass over a bit. This change in the resistivity under an applied magnetic field is

called magnetoresistance (MR) and materials evincing it are called magnetoresistive. The

magneoresistance is generally only a few percent in metals and semiconductors. One such

material was Permalloy, an alloy of Iron and Nickel. The current read heads in hard drives

are giant magnetoresistive (GMR) type based on multilayer thin film technology. Recently,

improved material synthesis techniques developed in the quest to develop high temperature

superconductors led researchers to revisit the doped LaMnO3 class of materials. In these

manganites, the application of a magnetic field causes the resistivity to drop by several

orders of magnitude, which would be ideal for device applications. Such materials were

said to possess colossal magnetoresistance (CMR) as compared to the much smaller MR

or GMR observed before. The basic physics behind this colossal drop of the resistivity

in the presence of a magnetic field is an insulator-to-metal transition1 which results in

electronic phase separation (in which two electronic phases are spatially distinct) between a

ferromagnetic metallic and a paramagnetic insulating states.

The particular material that we will examine is La0.7Sr0.3MnO3, where doped holes induce

ferromagnetism and metallic conductivity. The parent compound, LaMnO3 is an antiferro-

magnetic insulator. Let us first briefly discuss how doped holes create metallic conductivity.
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FIG. 1: A unit cell of a cubic pervoskite ABO3. The small red, medium blue, and large yellow

spheres are B, A, and O sites, respectively.

In a crystal, the wave functions of electrons on neighboring atoms mix and their energy

levels expand into bands of allowed energies. Because electrons follow the Pauli Exclusion

principle, they cannot occupy the same states simultaneously. Thus, the electrons fill the

available states up to an energy known as the Fermi energy, EF . In metals, electrons near

EF are still free to move because there are still available but unoccupied states in the band.

An insulator is the case when all the available states are filled with electrons. While gen-

erally we think of current as electrons flowing though a solid, current can also be induced

if some of the electrons in the occupied states are removed (or in other words holes are

doped), potentially allowing other electrons to hop in. The holes often have similar mobility

as electrons and thus can create metallic conductivity.

The manganites typically have crystal structures derived from cubic perovskite lattices

(see Fig. 1), in which each Mn cation is surrounded by six oxygen ions which form an octahe-

dron around it. In this environment, the crystal fields of the ligands split the degeneracy of

the 3d-orbitals on the Mn site into three degenerate t2g and two degenerate eg orbitals. (see

Fig. 2(a)). Strong Hund’s rule coupling (related to the minimization of Coulomb repulsion

of the electrons on a given atom, while satisfying the Pauli exclusion principle) results in

the spins of the 3d electrons being aligned. As a result, the t2g spins are localized while the

eg spin has an available state to hop. However, the eg spin makes the Mn
3+ ion Jahn-Teller

(JT) active.2 That is, the system is able to lower its energy by allowing a distortion of the

oxygen environment. This distortion breaks the degeneracy of the eg orbitals, with one

orbital becoming lower in energy and the other higher than in the degenerate case. (also see
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FIG. 2: (a) Cubic and tetragonal crystal field splitting of 3d orbitals in Mn3+. (b) A simple

representation of ferromagnetic coupling via double exchange.

Fig. 2(a)) Since there is only one electron occupying the eg level, it occupies the lower en-

ergy level leaving the parent compound insulating.3 As we replace some of the La3+ cations

with Sr2+ cations, we dope carriers into the system in the form of holes on Mn sites. Thus,

we will have a mixture of Mn3+ and Mn4+ ions, and as the carrier concentration is varied,

the system’s physical properties change as shown in Fig. 3.4 The ferromagnetic order and

metallic conductivity first show up at x ∼ 0.1 and at x ∼ 0.15, respectively. When the

Sr concentration reaches x ∼ 0.3, the ferromagnetic transition temperature, TC , becomes

maximum and the material becomes metallic over the entire observed temperature range.

Now, we’ve suggested how the system becomes metallic at high carrier concentrations,

but the question remains, why does it become ferromagnetic (that is, why do the spins

on different Mn sites spontaneously align in the same direction?). While there are various

causes of magnetism in materials, the dominant factor for the manganites is known as double

exchange. Here, there is a ”virtual process” in which the eg electrons are allowed to hop

from site to site. If you imagine that the eg electron is hoping from one Mn
3+ site to a Mn4+

site, and back again, it is plausible that the probability of hoping will depend on the relative

orientation of spins on the two sites (see Fig. 2(b)). In fact, because of the Hund’s rule

coupling, as the spin moves from the Mn3+ site to the Mn4+ site, it would ”like” to be aligned

with the t2g spins on that site. Thus, if the spins on both sites are aligned, hopping is easier.

Thus, ferromagnetism evolves from the system maximizing the probability of hopping. This

is the physical basis behind the double-exchange model of Zener.5
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FIG. 3: (a) The resistivity of La1−xSrxMnO3 as a function of temperature. The arrows indicate

critical temperatures for magnetic transitions. (b) The phase diagram of La1−xSrxMnO3 system.

For abbreviations, F, P, C, M, and I stand for ferromagnetic, paramagnetic, spin-canted antiferro-

magnetic, metallic and insulating, respectively.4

Question: (1) Based on the picture described above, explain how magnetic field

reduces the resistivity in CMR materials. (2) In Fig. 3(b), what would you suggest

is the hole doping concentration that is potentially useful for CMR read head

application, and why?

II. BASICS OF NEUTRON SCATTERING

A. Neutron as a probe of matter

It is the ability of the neutron to exchange a measurable amount of energy with a liquid

or solid sample that makes it useful as a probe of the various dynamical phenomena in

condensed matter systems.6 Typical neutron energies available at a reactor source can range

from 100 – 500 meV (hot), to 5 – 100 meV (thermal), to 0.1 – 10 meV (cold), where 1

meV = 10−3 eV = 8.06 cm−1. A number of different methods can be used to prepare a

monochromatic (or monoenergetic) neutron beam having energies that are comparable in
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magnitude to, for example, those of the lattice vibrations in a solid (phonons), the spin

excitations in a magnetic system (magnons), the torsional, bending, or stretching vibrations

of a polymer chain, or the rotational motions in a molecular solid (librons). It is usually

quite easy to detect the change in the neutron energy after scattering from a sample since

the energy transferred to or from the sample ∆E = Ei−Ef generally represents a significant

fraction of the initial and final neutron energies Ei and Ef .

The energy ∆E transferred during the interaction between neutron and sample can be

used to create an excitation (such as a phonon or magnon) of the system, in which case the

neutron loses an amount of energy ∆E equal to the energy of the excitation. Conversely, the

same excitation can give up its energy to the neutron, in which case the excitation is said

to be annihilated. In either case, the physics of the excitation as revealed by the absolute

change in the neutron energy is the same. The energy transfer ∆E is often expressed as a

frequency of vibration through the relation

∆E = h̄ω, (1)

where 2πh̄ = h = 6.626× 10−34 Joules-seconds is Planck’s constant, and ω is the frequency

of vibration of the excitation. Since frequency and time are inversely related, the neutron

energy transfer h̄ω reflects the time scale of the dynamics.

Question: Estimate the value of (∆E/Ei) required to observe an optic phonon

with an energy of 10 meV using x-ray, light, and neutron scattering techniques

assuming the values of Ei = 7,000 eV, 2 eV, and 30 meV (0.030 eV), respectively.

Which technique is best suited for this measurement?

In addition to having energies that are well adapted to the study of a large variety of

dynamical phenomenon, neutrons also possess the ability to provide, simultaneously, unique

information about the geometry of these dynamics through the exchange of momentum with

the sample. This is done by measuring in what directions (i. e., through what angles) the

neutrons scatter. The momentum of a neutron varies inversely with the neutron wavelength

λ, and hence an accurate measure of the momentum transferred between sample and neutron

during the scattering process will in turn provide information about the spatial scale of the
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dynamics being probed. Such an accurate measure is relatively easy to obtain as long as

the neutron wavelength is comparable to the length scale of the motions of interest.

Question: The relationship between wavelength and energy for the neutron is

given by:

E =
h2

2mλ2
= 81.81(meV · Å2)/λ2, (2)

where m = 1.675 × 10−24 grams is the mass of the neutron. Using this equation,

estimate the wavelengths corresponding to hot, thermal, and cold neutrons avail-

able at a reactor source. How do these wavelengths compare with the length scales

associated with the dynamics or motions you are specifically interested in?

In the following sections we will discuss the partial differential scattering cross section,

which is the actual physical quantity that is measured by neutron spectroscopy. We then

outline the basic operating principles behind a triple-axis spectrometer (TAS), the concept

for which Bertram Brockhouse earned the 1994 Nobel prize in physics shared jointly with

Clifford Shull.

B. The Partial Differential Scattering Cross Section d2σ
dΩdEf

Most neutron spectroscopic techniques can be reduced to a measurement of what is called

the partial differential scattering cross section, or d2σ/dΩdEf , as a function of the neutron

energy transfer h̄ω and the neutron momentum transfer ~Q.6 The quantity ~Q is known as

the scattering vector, and has units of inverse length. In the scattering process between the

neutron and the sample, the total momentum and energy of the system are conserved, i. e.

~Q = ~ki − ~kf , (3)

h̄ω = Ei − Ef = ∆E. (4)

Hence the energy or momentum lost (or gained) by the neutron when it scatters from a

sample is gained (or lost) by the sample. In the previous equation, the quantities ~ki and ~kf

refer to the initial and final neutron wavevector, respectively, and point in the direction of
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FIG. 4: Scattering triangle. The neutron is scattered through the angle 2θ and the scattering

vector, ~Q, is given by the vector relationship ~Q = ~ki − ~kf .

the incident and final (scattered) neutron beam. The relationship between ~ki, ~kf , and ~Q can

be represented by the scattering triangle shown in Fig. 4. The magnitude of the neutron

wavevector k is 2π/λ, and is related to the neutron energy via

E =
(h̄k)2

2m
= 2.072(meV · Å)k2, (5)

From this last equation, one can obtain the second equation in Fig. 4 which relates the

energy transfer to the magnitude of the initial and final wavevectors. The angle between ~ki

and ~kf is commonly denoted by 2θ, and represents the total angle through which a neutron

is scattered by the sample. Note that the convention followed in this summer school is such

that the energy transfer h̄ω is positive when Ei > Ef , i. e. when the neutron loses energy to

the sample during the scattering process. This convention of defining when h̄ω is positive

varies among neutron scattering facilities.

The partial differential scattering cross section is defined as the total number of neutrons

scattered per second by the sample into a unit of solid angle dΩ in a given direction, having

final energies E that lie between Ef and Ef + dEf . It is normalized by the neutron flux

incident on the sample Φ0 (measured in neutrons/sec/cm
2) so that it has units of area/(solid

angle)/energy. If one integrates the partial differential scattering cross section over the entire

solid angle (= 4π steradians), and all final energies (0 ≤ Ef ≤ ∞), one obtains the total

number of neutrons scattered out of the beam per second by the sample. (This assumes

that the absorption of neutrons by the sample, which can often occur, is negligible.) This is

known as the total scattering cross section σ, which has units of area. Thus σ represents the

scattering strength of the sample, and can be viewed as an unnormalized probability that an

incident neutron will be scattered. If one compares the value of σ for hydrogen with that of

aluminum, it will be clear that different elements can have enormously different scattering
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strengths.

Question: The scattering cross section for x-rays is a strong and monotonically

increasing function of atomic number Z. This is because x-rays scatter from the

electrons of an atom, which increases with increasing Z. Neutrons, by contrast,

scatter from the atomic nucleus via short-range nuclear forces. If you plot σ for

neutrons versus Z, do you see any trend? In what ways might this be advanta-

geous? (Values for σ can be obtained from the NCNR Summer School webpage

under “Course Materials,” or at http://www.ncnr.nist.gov/resources/n-lengths/.)

It is instructive to consider the relative sizes of σ and d2σ/dΩdEf . Clearly σ, which

represents the total number of neutrons scattered per second by the sample, is many orders

of magnitude larger than d2σ/dΩdEf , which is an analyzed quantity both in energy and

direction. On the other hand, the partial differential scattering cross section provides a

correspondingly greater amount of information because it contains all of the details of the

individual and collective motions of the atoms, molecules, and/or any atomic magnetic

moments that comprise the sample. The differential cross section dσ/dΩ, which is what is

measured in a diffraction experiment, lies between σ and d2σ/dΩdEf in size. As the elastic

component dominates in dσ/dΩ, it gives the time-averaged (equilibrium) positions of all of

the nuclei in the sample, and is used to determine the crystal structure.

The partial differential scattering cross section can be cast into a useful mathematical

form via the formalism outlined at the end of the neutron scattering primer written by Roger

Pynn7 (which the summer student is presumed to have read). With a small deviation from

the notation used by Pynn we can write the partial differential cross section for a system

composed of a single atomic element as

d2σ

dΩdEf

=
1

4π

(

kf
ki

)

[

σcohScoh( ~Q, ω) + σincSinc( ~Q, ω)
]

, (6)

where S( ~Q, ω) is exactly same quantity as I( ~Q, ε) used by Pynn to express Van Hove’s

scattering law. The subscripts coh and inc refer to the coherent and incoherent parts of the

scattering, and pertain to the collective or individual motions of the atoms, respectively,

as described on page 9 of Pynn’s primer. For the purposes of this experiment on SPINS,
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we are only concerned with the collective dynamics of the magnetic moments present in

La0.7Sr0.3MnO3, and thus the coherent part of the partial differential scattering cross section.

The scattering function Scoh( ~Q, ω) contains a double sum over pairs of nuclei as shown

in Eq. 3 on page 28 of Pynn’s primer.7 Each term in this sum represents the correlation

between the position of one nucleus at a time t = 0 with that of another nucleus at an

arbitrary time t later. These correlations are important for systems in which the nuclei are

strongly coupled via some type of interaction, and less so when this coupling is weak. In

either case Scoh( ~Q, ω) provides a measure of the strength of this coupling, and hence the

resulting collective motions. It is therefore extremely useful, for example, in mapping out

the dispersion relations of lattice vibrations, that is how the energy ω of the lattice vibrations

changes at different ~Q positions, in solids. For the remainder of this discussion, we will drop

the subscript coh with the understanding that we are referring to the coherent part of the

scattering function.

The scattering function S( ~Q, ω) can be simply related to the imaginary part of the dy-

namical susceptibility according to

S( ~Q, ω) =
h̄

π

(

1

eh̄ω/kBT − 1
+ 1

)

χ′′( ~Q, ω), (7)

where kB = 1.381× 10
−23 Joules/K is Boltzmann’s constant (note: h̄/kB = 11.60 K/meV is

a handy conversion factor). This is a very important equation since it shows that S( ~Q, ω),

which is readily obtained from the experimentally measured partial differential scattering

cross section via Eq. (6), is also related to a quantity that is easily calculated by theorists,

χ′′( ~Q, ω). The dynamical susceptibility is a measure of how the system responds when it

is ”wiggled”. χ′′( ~Q, ω) refers to the imaginary part of this quantity, which is related to

how energy is dissipated by the system. Therefore a measurement of the partial differential

scattering cross section via neutron spectroscopy allows for a direct test of theoretical models.

By recording the scatterered neutron intensity as a function of energy transfer h̄ω and

momentum transfer ~Q, and removing the instrumental effects, one obtains S( ~Q, ω), which

contains all of the dynamical information about the system.

With the exception of the neutron spin-echo (NSE) technique, all other neutron spectro-

scopic methods measure d2σ/dΩdEf using a neutron detector to count the number of neu-

trons scattered per unit time from a sample as a function of the energy transfer ∆E = h̄ω

and the momentum transfer ~Q. To do this requires that one know the energy and wavevector
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FIG. 5: The relationship between the neutron scattering cross section and the spin-spin correlation

function. The relaxation rate Γ is HWHM in energy of S(Q,ω), and is inversely proportional to

the lifetime of the excitation τ . The line-width κ is the HWHM in momentum transfer of S(Q,ω),

and is inversely proportional to the correlation length ξ.

of the neutron before (Ei, ~ki) and after (Ef , ~kf ) it scatters from the sample. There are many

ways of doing this, and most will be illustrated by the different experiments in this summer

school. As will be seen, each method has its own particular advantages and limitations,

depending on the range of energy transfers (time scales) and momentum transfers (length

scales) one wishes to study.

C. Understanding The Spin-Spin Correlation Function < SR(t) · SR′ (0) >

The intensity of neutrons scattered from the magnetic moments in a solid is proportional

to the spin-spin correlation function:6

d2σ

dΩdEf

= r20
kf
ki
|
g

2
F (Q)|2

∑

αβ

(δαβ − Q̂αQ̂β)
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1

2πh̄

∫

dt eiωt
1

N

∑

~R~R′

< Sα
~R
(t)Sβ

~R′
(0) > e−i ~Q·(~R−~R′) (8)

where r0 = −0.54 · 10
−12 cm, g is the gyromagnetic ratio, F (Q) is the magnetic form-factor

andN is the number of unit cells in the solid. Basically the partial differential scattering cross

section d2σ/dΩdEf is the Fourier transform in space and time of the spin-spin correlation

function < SR(t) ·SR′ (0) >. Thus, neutron elastic scattering probes static ordered moments,

whereas neutron inelastic scattering probes fluctuating (dynamic) moments.

While this equation appears formidable, Fig. 5 can help shed substantial light on the

relationship between the measured magnetic neutron scattering cross section and the time-

dependent spin-spin correlation function. The spatial dependence of the spin correlations can

be determined from the Q-dependence of S( ~Q, ω). For example, if S( ~Q, ω) is Q-resolution

limited, then this would indicate that the spatial correlations are of long-range. However,

if S( ~Q, ω) is broader than the instrumental Q-resolution, then the correlations are short-

ranged. A similar argument can be made for linewidths, which is the peak widths observed in

energy scans. If S( ~Q, ω) is h̄ω-resolution limited, then this would indicate that the temporal

correlations are of long-range. However, if S( ~Q, ω) is broader than the instrumental h̄ω-

resolution, then the excitations are only short-lived in time.

III. TRIPLE-AXIS SPECTROSCOPY

A. Introduction to The Triple-Axis Spectrometer

The triple-axis spectrometer (TAS) is an extremely versatile instrument that is primarily

intended for the study of the collective motions of the atoms and their magnetic moments

in single crystal samples. The first TAS system was used to obtain the first experimental

demonstration of phonon and magnon dispersion curves (in aluminum and magnetite) in

the mid 1950’s.8 The instrument derives its name from the fact that the neutrons interact

with three crystals on their way from reactor to detector, each crystal being able to rotate

independently about a vertical axis passing through its center. This is shown schematically

in Fig. 6. The first crystal is called the monochromator, as it selects a single monochromatic

component from the white neutron beam emanating from the reactor or neutron guide. The

second crystal is the sample itself (although it may be either a single crystal or a powder).

The third crystal is called the analyzer, as it is used to analyze the energy spectrum of the
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FIG. 6: Schematic scattering configuration for a conventional triple-axis spectrometer. It measures

a scattering event at a single value of ( ~Q, h̄ω) at a time.

neutron beam that scatters from the sample. The last primary element of the instrument

is, of course, the neutron detector.

In a triple-axis spectrometer, the initial and final neutron energies are determined by

exploiting the process of Bragg diffraction from the monochromator and analyzer single

crystals. This is done by rotating the crystals about their respective vertical axes such that

a specific set of atomic Bragg planes, having a well-defined interplanar spacing d, makes an

angle θ, known as the Bragg angle, with respect to the initial (or scattered) beam direction.

When this is done, only neutrons with wavelengths that satisfy the Bragg condition (see

pages 9-11 of Pynn’s primer)

nλ = 2d sin θ, (9)

where n is an integer greater than zero, will Bragg scatter from each crystal and proceed

successfully to the next element of the spectrometer.

Question: Because the variable n in Bragg’s law can be any integer greater than

zero, more than one monochromatic component can be present in the neutron beam

diffracted by either monochromator or analyzer. List the possible wavelengths of

these other components. How might their presence affect the experimental data?

To remove the extra and unwanted monochromatic components from a Bragg diffracted

13



beam, while preserving the neutron flux at the desired fundamental (n=1) wavelength λ,

it is common practice to place a filter composed of some solid material in the path of the

beam. The choice of material depends on the primary wavelength λ. For thermal neutrons,

a special form of graphite (pure carbon) known as highly-oriented pyrolytic graphite (HOPG

or just PG) is often used. Graphite has a layered structure in which the crystalline [001]

or c-axis is normal to the layers. HOPG behaves like a crystal of graphite in which the

various graphite layers have all been randomly spun about the c-axis. Therefore HOPG can

be viewed as a single-crystal along [001], and a powder along the two orthogonal directions.

It exhibits very good transmission at certain neutron energies including 13.7, 14.7, 30.5, and

41 meV. Neutrons of other energies are preferentially (though not completely) scattered out

of the beam, thereby minimizing the chance they will enter the detector and contribute to

the background.

For cold neutrons, such as those used on the SPINS spectrometer, a polycrystalline block

of beryllium (Be) is used as a wavelength filter. The requirement for this filter to work is

that there be enough tiny crystallites to span all angular orientations, i. e. all values of the

Bragg angle θ, so that all unwanted neutrons are Bragg scattered out of the neutron beam.

Question: (1) Consider a white (polychromatic) beam incident on a polycrys-

talline Be filter. What happens to those neutrons with wavelengths λ > 2dmax,

where dmax = 1.98 Åis the largest interplanar d spacing available in beryllium?

What happens to those neutrons with λ ≤ 2dmax? Make a simple sketch of trans-

mission versus energy for this filter.

(2) What are the criteria for ideal materials for designing neutron low-pass filters?

As can be seen from Fig. 6, when the incident neutron beam from the reactor strikes

the monochromator, it is scattered through an angle 2θm from its initial direction. This

is commonly referred to as the monochromator scattering angle. In order for the resulting

monochromatic beam to hit the sample, it is necessary to rotate the subsequent elements

(sample, analyzer, and detector) of the spectrometer about the monochromator axis through

an angle of 2θm. The same situation applies for the sample, and the analyzer, i. e. associated

with each crystal is a Bragg angle θ, and a scattering angle 2θ. Hence each axis of the triple-

axis spectrometer is actually composed of two motors, one to control the crystal Bragg
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angle θ, and the other to rotate the subsequent (downstream) elements of the instrument

by the appropriate scattering angle 2θ. While there are many different motors involved in

the operation of a triple-axis spectrometer, such as those that control mechanical slits that

limit the horizontal and vertical extent of the neutron beam, the primary instrument motors

are those that control the values of θ and 2θ for the monochromator, sample, and analyzer.

(NOTE: The convention of naming θ and 2θ comes from the fact that 2θ = 2× θ for elastic

Bragg scattering. Even though this relation no longer holds for inelastic scattering, they are

still called the same way.)

The material most commonly used as monochromator and analyzer in a TAS system is

also HOPG. Its utility lies in its very high reflectivity for neutrons over a wide range of

energy, along with its negligible incoherent scattering and adsorption cross sections, and

its low atomic number so that scattering by gamma rays is small. The (002) Bragg planes

of HOPG have an interplanar d spacing of 3.354 Å. Other materials that also find use in

triple-axis spectroscopy are silicon, germanium, and copper.

Question: Calculate the monochromator Bragg and scattering angles required to

obtain a neutron beam having initial energies Ei = 14.7 meV, and 100 meV using

the (002) reflection of HOPG. The (220) reflection of copper has a d spacing of

1.278 Å. Would this be a better choice of monochromator in either case?

During the interaction with the sample, neutrons can lose or gain energy, and thus can

emerge with an energy Ef 6= Ei. The resulting energy transfer can be computed according

to

h̄ω = Ei − Ef =
h2

8m

(

1

d2m sin
2 θm

−
1

d2a sin
2 θa

)

, (10)

where dm and da are the d-spacings of the monochromating and analyzing crystals, respec-

tively. If the analyzer is set to select the same energy as that of the incident beam (Ei = Ef ),

then h̄ω = 0, and the scattering is said to be elastic. If not, one detects inelastic scattering

events. (A third category of scattering known as quasielastic scattering, is discussed in the

experiment on the Disc Chopper Spectrometer (DCS).)

Measuring the momentum transfer ~Q between neutron and sample is achieved by orienting

the incident and final neutron wavevectors with respect to each other to obtain the desired
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vector difference (~ki − ~kf ). Unlike the case of the monochromator and analyzer crystals,

the Bragg and scattering angles for the sample needn’t be related by a simple factor of 2.

Indeed, when measuring inelastic scattering they usually are not. Hence the notation 2θ

(which is quite common) can be misleading for the novice scatterer. With this warning in

mind, we can calculate the magnitude of the momentum transfer by computing the vector

dot product of ~Q with itself, i. e.

~Q · ~Q = (~ki − ~kf ) · (~ki − ~kf ), (11)

from which we obtain

Q =
√

k2i + k2f − 2kikf cos 2θ. (12)

Note that the momentum transfer does not depend on the sample Bragg angle θ, but only on

the sample scattering angle. The purpose of the Bragg angle is to allow the crystalline axes of

the sample (if it happens to be a single crystal) to be aligned in specific ways with respect to

the scattering vector ~Q. This allows one to probe the geometry of the dynamics in question

along different symmetry directions. The utility of the sample Bragg angle becomes moot,

however, in the case of a powder sample (composed of many tiny and randomly-oriented

single crystals).

Question: What is the maximum momentum transfer one can obtain in the case

of elastic scattering, i.e. |~ki| = |~kf |? What is the minimum? Why might these two

configurations be problematic from an experimental point of view?

By stepping the analyzer Bragg angle θa, or the monochromator Bragg angle θm, by

computer in small angular increments, one can effectively scan the energy transfer h̄ω.

Generally this is done while keeping the momentum transfer ~Q constant, and is known as a

constant- ~Q scan. The complement to the constant- ~Q scan is the constant-E scan in which

the energy transfer is held constant while one varies the momentum transfer. These two

scans are fundamental to the triple-axis method, and are used commonly to map out the

dispersion relations for both phonons and magnons in condensed matter systems.

In the case of a constant- ~Q scan, one has the choice of fixing either the incident or final
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energy, through fixing the Bragg angles of either the monochromator or the analyzer. As

a rule, it is best not to vary both as one needs to place a wavelength filter in the path of

either the incident beam (before the sample) or the scattered beam (after the sample) in

order to remove the higher order harmonic content of the Bragg diffracted neutron beam

(remember the effect of the integer n in Bragg’s law). If the analyzer angle θa is fixed and one

varies θm, the result is an Ef -fixed configuration. Doing the opposite results in an Ei-fixed

configuration. Both methods yield data that contain the same physics. Deciding which to

choose depends largely on the specific problem being studied.

B. Resolution functions in Triple-Axis Spectroscopy

The theoretical scattering function Scoh( ~Q, ω) contains delta functions in momentum and

energy, such as δ( ~Q − ~Qo, ω − ωo). It means that the scattering intensity will be infinite

for ( ~Q, ω) = ( ~Qo, ωo) and zero for the rest. However, a measured intensity is always spread

out to a finite width in real experiments. One reason could be the short-range correlations

in time and space as described in Fig. 5. Even when there is a long-range order, however,

one will still observe peaks with non-zero widths. It is because of various experimental

uncertainties, such as divergence of the neutron beam or domain misorientations within a

sample. Although it may seem like a misfortune, it is in fact a very important element for

a practical implementation of the triple-axis spectroscopy, which sometimes is relaxed on

purpose. Without finite resolution, one will not only have a difficult time locating desired

signals, but also suffer from limited intensity coming from virtually zero acceptance. Below,

we briefly discuss the important factors determining experimental resolution of a triple-axis

spectrometer.

The monochromator and analyzer crystals are often intentionally processed to introduce

small angular misorientations of the Bragg planes. This can be done by pressing the crystals

under high pressure and temperature, for example, so the Bragg planes are no longer exactly

parallel to each other, but are instead narrowly distributed in angle. Such an angular

distribution is often Gaussian in form, and is usually characterized by the full-width at half

maximum (FWHM), known as the crystal mosaic. The result is that both monochromator

and analyzer will diffract a narrow spread of neutron energies that depends on the size of the

mosaic, and significantly increases the scattering intensity measured at the detector. Typical
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values for the mosaic spread range from 30′ (0.5o) to 40′. The resulting energy transfers of

the neutrons will be distributed about an average value h̄ω0.

The introduction of angular misorientation to the monochromator results in not only a

spread in neutron energy but also a spread in its direction. Typically a sample mosaic is

much larger than the monochromator mosaic, and can be an important factor in determining

momentum resolution. To improve or control the divergence, which is often called collima-

tion, collimators composed of sets of thin parallel blades are inserted into the beam whose

length L and separation v define the limiting divergence η of the neutrons according to

η = 2 tan−1(v/L) ≈ 2v/L. (13)

These blades are coated with a strongly neutron absorbing material such as Gd2O3 or Cd

such that neutrons with a divergence that exceeds η are absorbed and removed from the

beam. Typically collimators are inserted in each of the four different flight paths between

elements of the spectrometer, i.e. between reactor and monochromator, monochromator

and sample, etc. A choice of fine collimation improves the instrumental ~Q-resolution at the

expense of neutrons counted at the detector. A choice of coarse resolution degrades the

~Q-resolution, but increases the neutron count rate. To optimize the experimental data then,

it is best to match the ~Q-resolution of the instrument with the features of the scattering one

is try to measure.

In general, the instrumental ( ~Q, h̄ω)-resolution is a complicated function of the factors

discussed above plus ~ki, ~kf , etc.. For a given spectrometer configuration, the instrumental

resolution can be expressed as a four-dimensional function of h̄ω and ~Q as R( ~Q− ~Q0, ω−ω0),

and is always calculated by computer. The surface of constant probability calculated at

( ~Q, ω) = ( ~Q0, ω0), say R = 50%, has a different length in each dimensional axis, so it

is often called resolution ellipsoid. While one can often extract meaningful results from

TAS measurements without needing to take the effects of the finite instrumental resolution

into account, all data must be corrected for these effects before they can be compared to

theoretical calculations of the scattering function S( ~Q, ω). Fortunately, the intensity at the

detector is well-described by a convolution of the resolution function with the scattering

function, i. e.
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FIG. 7: Overview of the SPINS spectrometer. The arrows show the path of the neutron beam

during a scattering experiment. M, S, A, and D stand for monochromator, sample, analyzer, and

detector.

Id( ~Q0, ω0) =
∫

R( ~Q− ~Q0, ω − ω0)S( ~Q, ω)d ~Qdω. (14)

While a detailed discussion of R is beyond the scope of this handout,9 all users of triple-axis

spectrometers will need to know how to optimize the instrumental resolution to match the

time scales and length scales of the problem they wish to study.

C. The NCNR Spin Polarized Inelastic Neutron Scattering (SPINS) Spectrometer

The SPINS spectrometer is a cold-neutron triple-axis spectrometer. Fig. 7 show an

overview of the SPINS spectrometer and the schematics of the neutron path. It was designed

to be operated in various configurations including (1) conventional triple-axis mode, (2)

horizontally focusing mode, and (3) multiplexing mode. Polarized-neutron scattering mode

is also optionally available. Since the conventional triple-axis mode has been discussed

previously (see Fig. 6), below we describe the other two modes of operation. Since many

components of the SPINS instrument can be changed as necessary, other modes not described

here are also possible.

(a) Horizontally focusing mode: The analyzer of the SPINS spectrometer consists of 11
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FIG. 8: Schematic scattering configuration of a multiplexing detection system utilizing a Position-

Sensitive-Dector (PSD) for a triple-axis spectrometer. It simultaneously measures scattering events

at different values of ( ~Q, h̄ω).

blades of PG crystals that are standing vertically in a row. Each blade is motorized, so it can

be individually rotated. If all of the blades are flat with respect to each other, only one of

the blades will satisfy the exact Bragg condition, and the scattered beam from other blades

will not reach the detector. On the other hand, one can individually align blades so that the

scattered beams are focused into the single detector. It has an effect of relaxing momentum

resolution but at the same time the detected intensity is increased roughly proportionally to

the number of focused blades. Ideally the blades need to be positioned on an arc of a circle

encompassing the positions of the sample and the detector. In practise, one can achieve an

approximate focusing condition by placing the row of the blades tangential to the relevant

arc. This mode of operation is quite useful when studied features are broad in momentum

space.

(b) Multiplexing mode: We have discussed before that, if all of the blades are fixed

flat, the scattered neutrons will not reach a single detector position. It suggests that one

can recover all of the scattered neutrons by utilizing a wide area detector instead. By the

combination of 11 flat analyzer blades and an area detector which has a sensitivity in its areal

positions, the momentum information from individual blades can be discriminated. What

is important in this case is that each blade will produce information not only with different

momentum transfer but also different energy transfer. The diagram of the multiplexing

mode is shown schematically in Fig. 8.
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IV. EXPERIMENT AND ANALYSIS

A. Simple ferromagnetic spin-waves

Perhaps one of the simplest microscopic models of magnetism starts from the Heisenberg

Hamiltonian and is generally applicable to insulators (or more formally, systems in which

the spins are localized), in which the spin interactions are mediated between overlaps of the

atomic wave-functions of electrons living on magnetic ions directly, or through intermediaries

such as oxygen. The resulting magnetism originates from a combination of the Coulomb

repulsion and the Pauli exclusion principle. In this model, the interaction energy between

two neighboring spins is simply:

E = −JS1 · S2 (15)

where J is the exchange constant representing the strength of magnetic exchange, and Si

is a vector operator of the ith spin. If J is positive, then a lower energy occurs when the

moments are parallel and the ground state at zero temperature will be a ferromagnet as

in the present case of interest. If J is negative, then the nearest-neighbor spins will align

antiparallel to lower their energies, and this is called an antiferromagnet. (See Fig. 9(a))

But given the ground state of the system, what of its excitations? One of the simplest

excitations we could imagine is to simply flip the direction of one of the spins. However, the

energy cost of this would be large (12J for a cubic lattice). A much lower energy excitation

can be achieved if this spin reversal is shared among many spins. Classically, if we allow the

spins to precess about their axes, then a spin-wave can be thought of as a constant phase

difference between the precession rates of neighboring spins. (See Fig. 9(b))

The measured spin wave dispersion relation at low temperatures for La.85Sr.15MnO3,

which is similar to the sample we are going to study, is shown in Fig. 10. We can see that

the energy of the spin waves at small q (long wavelength) is quite small, while at the zone

boundary, the excitation energy rises to a relatively high energy of 55 meV (short wavelength

excitations mean that the excitation is shared by fewer spins and that neighboring spins are

out of alignment to a greater extent, thus requiring more energy to excite). Cold neutron

spectroscopy is best applicable to low energy excitations (<∼ 10 meV), and consequently we

will be investigating the spin wave excitations at small q in this experiment. The solutions
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FIG. 9: (a) Examples of simple magnetic ordering patterns. (b) Classical representation of spin

wave excitation in an one-dimensional ferromagnet.

to the equations of motion for our simple hamiltonian gives the following dispersion relation:

E = 8SJ sin2(
qa

2
) (16)

For small q, we may expand the sine function in the dispersion relation to obtain the ap-

proximate expression E ≈ 2JSa2q2. We should also include the possibility of magnetic

anisotropy in the system. In real spin systems, the moments prefer to point along one par-

ticular crystallographic direction and this is represented by the gap parameter, ∆. This

particular direction is called the magnetic easy axis, and ∆ represents the energy required

to rotate the spins away from this easy direction. A ”soft” ferromagnet is one where ∆ is

small, as we are expecting for the present system. For a ”hard” or ”permanent” magnet,

such as on your refrigerator, this costs a lot of energy, and ∆ will be large.

In general, the spin wave spectrum changes with temperature. As we increase the tem-

perature, we can thermally excite spin waves and these spin waves gradually destroy the

ordered state. There are also collisions between spin-waves. Generally, we can write the

spin wave dispersion relation in the small q regime as:

ESW = ∆+D(T )q2 + E(T )q4 + .... (17)

where D is the spin-wave ”stiffness”, and the rest of the terms are higher order terms in a
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FIG. 10: Spin wave dispersion in La0.85Sr0.15MnO3. The wave vectors are based on the orthorhom-

bic representation.10

Taylor expansion. The quantitative value of the stiffness constant D depends on the details

of the interactions and the nature of the magnetism, such as whether the magnetic electrons

are localized or itinerant, or the structure is amorphous or crystalline, but the general from

of the spin wave dispersion relation is the same for all isotropic ferromagnets. As T −→ TC ,

in the critical regime just below magnetic ordering temperature TC , D(T ) should follow a

power law given by

D(T ) ∝ (1−
T

TC
)ν

′−β (18)

where ν ′ (∼ 2
3
) is the critical exponent for the correlation length below TC and β is the critical

exponent for the temperature dependence of the magnetization. At elevated temperatures,

there will also be many spin waves in the system, and collisions between the spin waves

will result in decays of normal modes and consequently finite intrinsic lifetime. The intrinsic

line-widths of the spin wave excitations in the long wavelength regime are expected to follow:

Γ(q, T ) ∝ q4(T ln
kT

ESW

)2 (19)

Finally, we can determine the number of spin waves that are thermally populated at each

temperature and energy, which is directly related to the intensity of the spin waves. These

are boson (bosons are particles in which there are no restrictions on the number of particles

existing in the same state.) excitations, and should obey the Bose-Einstein population

factor:
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n(E) =
1

e
ESW

kT − 1
(20)

Neutrons can annihilate a spin wave excitation in the sample, and gain energy; the proba-

bility for this process to occur is directly proportional to the number of spin waves n(E) at

the spin wave energy ESW . The neutrons can also create a spin wave in the system, while

losing energy. The probability for this process is proportional to 1+n(E), where the 1 comes

from the fact that is always possible to create a spin wave excitation, even at T = 0. This

is something that we should also be able to extract from the experimental data.

B. Experimental Planning and Setup

When planning neutron scattering experiments, it is important to have as much under-

standing as possible of the basic properties of the material. For instance, understanding of

the crystallographic information, such as lattice parameters, is imperative. In the case of

single crystal samples, it is also important to have some idea about the direction of prin-

cipal crystal axes. For an effective investigation, measurements of bulk properties such as

the magnetic susceptibility, heat capacity and resistivity, can serve as an invaluable guide.

All NCNR facility users should avail themselves of any existing data, be it their own, or

published elsewhere, that could help them make more efficient use of their beam time.

Crystallographically, La0.7Sr0.3MnO3 belongs to a space group R3̄c with the lattice param-

eters a = b = 5.5084 Å, c = 13.3717 Å, α = β = 90o, and γ = 120o. This hexagonal geometry

is equivalent to a rhombohedral one with a = b = c = 3.8835 Å and α = β = γ = 90.344o.

Since it is close enough to cubic symmetry, we will do the measurement based on the cubic

notation for convenience. Fig. 3(b) shows the ferromagnetic transition temperatures, TC ,

of La1−xSrxMnO3 as a function of x. La0.7Sr0.3MnO3 has TC ∼ 350 K. Therefore, we need

sample environment equipment that can control higher than room temperature in order to

study the ferromagnetic transition.

Question: (1) La0.7Sr0.3MnO3 orders ferromagnetically below TC = 350 K. Where

in the reciprocal space do we have to search for the spin wave excitations?

(2) How would the fluctuations be different between above and below TC?
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The primary goal of this experiment is to measure spin excitation spectrum from the

ferromagnetically ordered phase and understand its temperature-dependent behavior. A ∼

4 gram single crystal sample of La0.7Sr0.3MnO3 has been sealed inside an aluminum container.

Aluminum is among the most commonly used materials for sample containers because it is

relatively transparent to neutrons. The container has been mounted inside a He closed-cycle

refrigerator/furnace that can be controlled between 30 - 600 K, and placed on top of the

SPINS goniometer (or sample) table. The measurement will be done in the temperature

range between 30 and 400 K.

The incident neutron energy on SPINS can be varied from 2.4 ≤ Ei ≤ 14 meV. A 6-inch,

liquid-nitrogen cooled, polycrystalline BeO filter, which transmits only neutrons having

energies below the Bragg cutoff energy of 3.7 meV, Bragg scatters all other neutrons out of

the transmitted beam. It has been placed after the sample to eliminate higher-order (n > 1)

monochromatic components passed by the monochromator. The energy of the analyzer

blades has been set to 3.6 meV, so the allowed range of energy transfer is −1.2 ≤ ∆E ≤ 10.4

meV.

Question: Why is the SPINS BeO filter cooled?

Our measurements will proceed as following. (Some data sets may be taken in advance

and distributed.) (1) First, we will measure the integrated intensity of (1 0 0) peak as a

function of temperature in the range 250 – 400 K. To properly obtain integrated intensities,

one needs to perform both transverse (θ) and longitudinal (θ−2θ) scans. From this, we will

be able to extract TC of the sample. (2) Second, we will measure the spin wave spectrum up

to ∆E ∼ 10 meV by scanning incident energy at several Q points. From the measured data

we can obtain the spin wave dispersion, which can be fitted to extract the spin wave stiffness

constant, D. The spin wave data may be taken at a few selected temperatures, and the

collection of data can be used to show howD changes as a function of temperature. (3) Third,

we will measure the quasielastic intensity at a certain Q close to (1 0 0) over a temperature

range going through TC . The measurement will also be done by scanning incident energy. By

analyzing the integrated intensities and the line-widths of the quasielastic peaks as functions

of temperature, we will be able to gain insights to the spin dynamics in the vicinity of the
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FIG. 11: Temperature dependence of the integrated intensity of the ferromagnetic (1 0 0) peak in

La0.8Ca0.2MnO3.
11

transition.

Question: (1) A θ scan may show multiple peaks instead of a single Gaussian.

What could be the reason if it does??

(2) Although it is not the case for the (1 0 0) peak in La0.7Sr0.3MnO3, what would

it mean if a θ − 2θ scan shows multiple peaks?

C. Data and analysis

Fig. 11 shows the temperature dependence of the integrated intensity of (1 0 0) Bragg

peak observed from La0.8Ca0.2MnO3. There is an intensity increase observed around TC =

181 K following a power law behavior. This intensity increase comes from ferromagnetic

order on Mn sites. The sample we are going to study, La0.7Sr0.3MnO3, will show TC at a

different temperature, but the data will look essentially similar. Knowing that spin waves

are fluctuations of ordered spins around average moment, one should expect to observe spin

excitation spectrum in the vicinity of this reflection. The (1 0 0) position is particularly
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FIG. 12: Constant-Q scans revealing spin wave excitations for La0.7Sr0.3MnO3 (a) at T = 300 K

and (b) Q = (0 0 0.965).

advantageous, since it is the smallest wave vector where ferromagnetic intensity is observed.

It is because magnetic scattering intensity generally decreases at higher momentum transfer

due to spatial distribution of unpaired electron density around nuclei.

Question: Why does the ferromagnetic peak position coincide with nuclear peak,

say, at (1 0 0)? How about antiferromagnets?

The energy scan data we are going to obtain will be similar to what is shown in Fig.

12. Constant-Q scans typically show three peaks: a central (quasi)elastic peak and an

inelastic spin wave peak on each side of positive and negative energy transfer. Fig. 12(a)

shows that the spin wave energy increases as we move away from the ferromagnetic (0 0

1) peak. The temperature dependence of D is suggested in the data shown in Fig. 12(b).

Although the lineshape of triple-axis data is a complex function of various parameters,
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wave stiffness constant of La0.85Sr0.15MnO3.
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one can approximately extract the energy values by fitting with Lorentzian functions. A

series of energy values obtained at various momentum transfer can be used to obtain the

dispersion relation. The dispersion relation in an isotropic ferromagnet can be conveniently

expressed by Equation (17), where the temperature dependent spin stiffness constant was

denoted as D(T ). Fig. 13(a) shows results obtained from La0.85Sr0.15MnO3 at two different

temperatures, and the obtained D(T ) are plotted in Fig. 13(b). The quantitative value of

the stiffness constant D depends on the details of the interactions and the nature of the

magnetism, but the general form of the spin wave dispersion relation is the same for all

Heisenberg ferromagnets.
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FIG. 14: Integrated intensity of the quasielastic peaks of La0.85Sr0.15MnO3 at (0 0 1.15) as a

function of temperature.10

Question: (1) What could be the reason that D changes with temperature? What

does it mean physically that D −→ 0 for T −→ TC?

(2) Why is the peak intensity always higher at ∆E > 0 than at ∆E < 0? How

would it change with temperature?

Finally, the integrated intensities of the quasi-elastic central peaks are obtained and the

result will be similar to what is shown in Fig. 14. These data were obtained slightly

away from the zone center, since otherwise the counts will be swamped by the intense

nuclear Bragg scattering. The central peak slowly gained intensity approaching TC in the

paramagnetic phase, which quickly dropped below TC . The intensity above TC mostly

comes from paramagentic fluctuations, while that below TC is mostly nuclear incoherent

background. It shows that we can observe the spectrum from spin dynamics even when

there is no long-range magnetic order. What is not shown in the plot is the linewidths as

a function of temperature. These data, if available, will give us an idea of the time scale

associated with the magnetic fluctuations.
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FIG. 15: An energy scan through spin wave excitations in La0.7Sr0.3MnO3 with spin-flip and

non-spin-flip channels. The difference in intensity clearly shows that the inelastic signal is due to

magnetic scattering while the elastic central peak is mostly nuclear. (Courtesy of Jeff Lynn)

Question: (1) What will Fig. 14 look like if we have measured at several dif-

ferent Q points? Do you expect that the paramagnetic fluctuations will have

Q-dependence? If they do, or don’t, what would it mean?

(2) What does the change of linewidths in the quasielastic peak suggest? The hint

is given in Fig. 5.

D. Polarized Neutron Scattering

We have previously learned that neutrons interact either with nuclei or with unpaired

electrons. While it is useful to have more than one type of neutron-sample interaction, it can

also be a source of confusion. Therefore, it becomes an important issue how to discriminate

magnetic scattering from nuclear scattering. There are several experimental methods to

do this, such as probing Q-dependence or temperature-dependence of intensity. Above all,

the most powerful and unambiguous method is the neutron polarization analysis. (See

Primer p. 24 – 26) It takes advantage of the fact that a neutron can spin flip for magnetic
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scattering while it can not for coherent nuclear scattering. Since the neutron polarization

analysis involves many experimental complications, such as additional equipment, reduced

intensity and a necessity for multiple measurements, we will not perform this during the

summer school. Nevertheless, data shown in Fig. 15, which were previously taken with this

technique, powerfully confirm that the excitations we observe in La0.7Sr0.3MnO3 are truly

magnetic in nature.
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V. APPENDIX

A. A Short Note on The Calculation of Spin Wave Dispersion

In order to calculate spin wave dispersions, one needs a good understanding, or at least

have a reasonable model, of a spin Hamiltonian describing magnetic energy of the system.

Typically it will include the crystallographic coordinates, spin orientations, exchange con-

stants, and/or anisotropy constants, etc.. The simplest spin Hamiltonian is the isotropic

Heisenberg model given by:

H = −
∑

i,j

Jij Si · Sj (21)

where the Si is spin S operator on ith site and Jij is the Heisenberg exchange constant

between spins on the ith and jth sites. The quantum fluctuation of a spin away from

its classical direction z̃ is expressed by the annihilation and creation operators, a†
i and ai,

following Holstein-Primakoff formalism:

Sx̃
i =

√

S

2
(a†

i + ai) (22)

S ỹ
i = i

√

S

2
(a†

i − ai)

S z̃
i = S − a†

iai,

which is derived from a linear approximation satisfying the spin commutation relation. They

can be transformed to a global coordinate by
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(23)

where, Ri is a rotational matrix corresponding to the relative rotation between the global z

axis and the local z̃ axis. After inserting the spin operator of each sublattice into the Hamil-

tonian and applying Fourier transformation, only the zeroth and the quadratic terms in the

creation/annihilation operators are considered. Finally, the Hamiltonian can be diagonal-

ized by Bogoliubov transformation to obtain one magnon dispersion relations. A detailed

description of the calculation is beyond the scope of this Summer School.

For commensurate order, where the magnetic lattice is an integer-multiple of the crys-

tallographic lattice, the number of modes is equal to the number of magnetic sublattices.
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FIG. 16: The surface plot of the spin wave dispersion relations for an isotropic ferromagnet on the

(h k 0) plane.

A ferromagnetic simple cubic lattice, similar to La0.7Sr0.3MnO3, has only one sublattice,

therefore one normal mode. For the case where nearest neighbor exchange is dominant, the

dispersion relation is given as following:

h̄ω = 4JS{3− cos(2πh)− cos(2πk)− cos(2πl)} (24)

The above equation suggests that the dispersion is isotropic near the zone center regardless

of the direction of q, which is typical of isotropic Heisenberg ferromagnets. The inclusion of

next nearest neighbor exchanges will modify the term J in the equation, but will not affect

the isotropy.

Question: Explain how the above dispersion relation agrees with the quadratic

dependence on q for an isotropic ferromagnet at small q limit, for instance, shown

in Eq. (17).
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