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Scattering Probes

How can we measure the atomic-scale properties of solids and liquids?
➢Use atomic-scale probes

Scattering techniques: 
➢ Measure how particles scatter off of a sample
➢ Scattering depends on interaction between sample and particles
➢ Different scattering probes have different characteristics

✔Photons (X-ray, light)
✔Electrons (RHEED, LEED)
✔Helium atoms
✔Neutrons

➢ Results can give us information on atomic-scale structure and 
dynamics

Why Neutrons?

● Wavelength:
– At 10 meV, λ = 2.86 Å
– Similar length scales as structures of interest

➔ Interference effects

● Energy:
– Thermal sources: ~ 5-100 meV
– Cold sources: ~ 1-10 meV
– Spallation sources: thermal + epithermal neutrons 

(> 100 meV)
– Comparable to excitation energies in solids and 

liquids

9.044 E
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Energy and Length Scales

NIST: 

7 orders of 
magnitude 
range in 
energy.

3 orders of 
magnitude in 
length scale.

Neutron Interactions

● Zero charge
– No interaction with charge densities (electrons)

● Nuclear force
– The interactions that bind neutrons to nuclei also 

scatter neutrons
● Magnetic dipole moment

– µn = 1.04x10-3 µB
– Neutrons scatter from magnetic moments

● Interactions are weak
– Neutrons penetrate deeply into samples
– Samples can be enclosed during experiments
– Sample size an important consideration
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Nuclear Interactions

Scattering cross section σ:
Area which represents probability 
that a neutron will interact with a 
nucleus.

σ varies “randomly” from element 
to element and even isotope to 
isotope.

Typical σ ~ 10-24 cm2 for a single 
nucleus. Total nuclear cross section 

for several isotopes

Neutron Wave Properties

Quantum mechanics: particles have wave properties

Momentum:

Energy:

E =    mv2 =        k2 = hω

Inverse relationships: 
length ~ 1/momentum
time ~ 1/frequency ~ 1/energy

mv = p = hk = h 2π
λ

λλ

k k

1
2

h2

2m Energy unit conversion:
1 meV ≅ 8 cm-1 ≅ 240 Ghz 

≅ 12K ≅ 0.1 kJ/mol
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Neutron Scattering Event

ki, Ei

Sample

Incident
neutrons

kf, Ef

Scattering basics:
– incident neutron
– scattered neutron

6 independent parameters:
– kx, ky, kz for initial and 

final neutrons (E depends 
on k)

Momentum Conservation:
– Q = ki – kf
– Q represents momentum 

transferred to sample

Scattering triangle:

Neutron spectrometer must 
be able to determine ki, kf

kf

ki

Q
Scattered
neutrons

Energy conservation:
∆Eneutron = -∆Esample
∆Esample = Ei – Ef ≡ hω =      (ki

2-kf
2)

Note: ω can vary indepdently of Q.

Elastic vs. Inelastic

h2

2m

kf

ki

Q
kf

ki
Q

Qkf

ki

ki = kf
ω = 0

Elastic scattering

ki > kf
ω > 0

ki < kf
ω < 0

Inelastic scattering
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Neutron Scattering Measurement

● What is a neutron scattering measurement?
– Neutron source sends neutrons to sample.
– Some neutrons scatter from sample.
– Scattered neutrons are detected.

● What are we measuring?
– Number of scattered neutrons as a function of (Q,ω).

● Our parameter space is 4-dimensional

kf

ki

Q,ω

ki, Ei

Sample

Incident
neutrons

kf, Ef

Scattered
neutrons

Neutron
source

detector

Scattering function S(Q,ω)

Intensity (number) of scattered neutrons is proportional to 
scattering function S(Q,ω).

– S(Q,ω) depends only on the sample, not on the 
neutron spectrometer.

What information does 
S(Q,ω) give us?

● Q gives information 
about  structure.

● ω gives information 
about dynamics (motion).

–Elastic
–Quasielastic
–Inelastic
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Scattering function S(Q,ω)

● Incoherent signal: Sinc(Q,ω) is the Fourier transform in 
space and time of the self correlation function.

– How do individual atoms behave independent of other 
atoms?

● Coherent signal: Scoh(Q,ω) is the Fourier transform in 
space and time of the pair correlation function.

– How do atoms behave in relation to other atoms?

S(Q,ω) has contributions from single-particle scattering 
(incoherent) and from multiple-particle scattering 
(coherent):

Coherent Scattering

Scattering from individual atoms is angle-independent.

Interference effects:
– Scattering sites are spatially correlated
– Phase of scattered neutrons are correlated

Coherent scattering is angle-dependent
– Angular dependence reveals spatial correlations
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Elastic Coherent Scattering

● If the time-averaged pair correlation function 
is periodic (such as for a crystal), then the 
Fourier transform will form a reciprocal lattice 
which is also periodic.

● S(Q,0) for a perfect crystal consists of delta 
functions at periodic Q positions.  Each delta 
function corresponds to a Bragg reflection.

● Bragg's Law: nλ = 2d sinθ
– Constructive interference when distance 

for two paths is multiple of wavelength
– gives an intuitive picture of S(Q,0)

Real space

Reciprocal space

Inelastic Coherent Scattering

Phonons: quantized lattice vibrations
● Motion of atoms 

➔ Inelastic scattering
● Correlated motion 

➔ Interference effects (coherent 
scattering)

Phonon properties:
● Frequency depends on propagation 

vector q
– ω(q) is dispersion relation

● Energy is quantized: E = hω
● Neutron scattering: S(Q=q,ω(q))

q

q
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Phonon Dispersion: MgB2

Shukla et al., 
Phys. Rev. Lett.
90, 095506 (2003)

Inelastic Magnetic Scattering

Magnetically ordered systems:
– Magnetic moments coupled to neighbors.
– Rotating one spin from equilibrium will exert 

torque on neighboring moments.
– Spin waves: excitations in magnetic order.

Inelastic neutron scattering can measure 
spin wave dispersion.

Animation courtesy of A. Zheludev
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1D magnetic system: CuCl2

Kenzelmann et al., 
Phys. Rev. Lett 93, 017204 (2004)

Intensity maps for magnetic scattering

Incoherent Scattering

Every particle has perfect instantaneous correlation with itself.  Its self-
correlation function is therefore a delta function in space.  

Sinc(Q) is independent of Q.  This contribution to the scattering at all 
momentum transfers is the primary source of background in many 
experiments.

delta
function constant
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Elastic Incoherent Scattering

For a perfectly stationary particle, the self-correlation function is constant in 
time.  

Sinc(Q,ω) for a stationary particle is a delta function in energy ω.  If atoms 
do not move, all incoherent scattering is elastic (ω = 0).  

constant
delta function 
ω0 = 0

Quasielastic Incoherent Scattering

If an atom is moving, then 
neutrons which scatter from it 
may gain or lose energy.

Example: random diffusion

Quasielastic incoherent scattering (broad in energy but centered at 
ω=0) can contain useful information:

– Diffusion rates, molecular reorientations, relaxations



12

Inelastic Incoherent Scattering

Local excitations (no spatial correlations):
– Q-independent scattering
– Periodic correlations in time
– Examples: crystal field levels, molecular vibration

Inelastic incoherent scattering:
– scattered neutrons can gain or lose energy ω0

0 ω0

P(t)

t

S(ω)

ω

delta function 
ω0 ≠ 0

Molecular Vibrations
Dodecahedrane (C20H20)
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Coherent vs. Incoherent

● Coherent cross section represents 
average scattering from that element.

● Incoherent cross section represents 
standard deviation in scattering.

● Deviations come from different isotopes of 
same element as well as nuclear spin 
state variations of single isotopes. 

For most elements, scattering is 
primarily coherent.

● Hydrogen is a very significant exception.
● Isotope selection can change cross 

section significantly.

Coherent IncoherentIndividual atomic scattering depend on 
isotope and nuclear spin state.

Isotope Specificity
G2[BPDS]*3(biphenyl)
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Scattering Review
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Crystal structures
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