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Abstract 
 

Time-of-flight neutron spectroscopy will be used to examine the orientational 
order/disorder transition in buckminsterfullerene. This experiment not only illustrates the 
important technique known as quasielastic neutron scattering (QENS), but also shows 
how one can simultaneously study the structure and the phonon density of states of C60. 
We shall discuss all aspects of the experiment, from sample preparation and the choice of 
instrumental setup through to data treatment and interpretation of results. 



I. Introduction 
 

For the past fifteen years there has been intense research into the structural, electronic, 
magnetic and chemical properties of the two newest allotropes of carbon, namely 
Buckminsterfullerene and nanotubes (arguably there are more), and their derivatives. The 
best-known carbon allotropes are: 
 
 
3-dimensional (3D) diamond     2-dimensional (2D) graphite 
 
 
 
 
 
 
 
 
1-dimensional (1D) carbon nanotubes               Solid C60 composed of 0-dimensional 

   (0D) C60 molecules in a cubic lattice.  
 

 
 
 
 
 
 
 
 

 
 
 

Figure 1. In diamond there is only one characteristic bond length which is 
~1.55 Å. In graphite there are two relevant interatomic distances; namely 
1.42 Å within the graphite sheets and ~3.4 Å between the sheets, defining 
the 2D structure. Nanotubes can have four different characteristic 
distances; carbon-carbon bond distance within each shell (which is almost 
the same as in graphite), the distance between shells (which is similar to 
the distance between the graphite layers), the length of the tube (which can 
reach up to 1mm) and the radius of the tube (which can vary from 10 Å to 
100 Å). C60 has two characteristic distances; the C-C bond length which is 
1.40 Å and 1.45 Å for double and single bonds, respectively 

 
 
 
The C60 molecule consists of sixty symmetry-equivalent carbon atoms with 12 isolated 
pentagons and 20 hexagons making the familiar soccer shaped molecule (or a truncated 



icosahedron) with point group symmetry, Ih. Its electronic properties are determined by 
the 60 pπ C orbitals, which are filled by 60 electrons. Crystallization results in the 
formation of a crystal structure that is face centered cubic (fcc) above 260 K with the 
molecules packing in a cubic arrangement with the distance between the centers of 
molecules being about 10 Å. It is possible to describe experimental X-ray powder data 
using a model consisting of a uniform shell of electron density (radius= 3.55 Å) in place 
of the C60 units within space group Fm3m (a= 14.1569(5) Å at 290 K). However, a better 
description of X-ray diffraction data is provided by using symmetry adapted spherical 
harmonic (SASH) functions (essentially derived from linear combinations of spherical 
harmonic functions, lmY ( , )θ φ ). In the fcc lattice, the scattering density shells occupy the 
4a sites of Oh symmetry, necessitating only the SASH functions with values for l= 0, 6, 
10 and 12. This analysis results in an excess charge density of ~10% along the <100> and 
a deficiency of ~16% along the <111> directions. In addition, the Bragg peaks ride on a 
distinctively humped diffuse background (fig. 2), the origins of which you should be able 
to guess, by the end of this course. 
 
On cooling through 260 K, a first order structural phase transition occurs, with the 
reorientational motion of the C60 molecules in the crystal becoming slower and now best 
described as a librational motion. The phase transition is accompanied by a sudden 
contraction of 0.344(8)% in the cubic lattice constant. Reflections not compatible with 
fcc symmetry are now present in the powder diffraction patterns, reflecting a long range 
orientational ordering of the fulleride units and a primitive cubic, Pa 3 , space group. The 
orientations of the four molecules occupying the positions (0,0,0), (½,0,½), (½,½,0) and 
(0, ½,½) in the new unit cell can be described starting from the so-called “standard 
orientation”, in which the [100] crystallographic axes align with three twofold molecular 
symmetry axes (perpendicular to hexagon-hexagon fusions) and the [111] 
crystallographic axes pass through the centres of hexagonal faces. Each of the molecules 
is then rotated anticlockwise by an angle φ about the [111], [111], [1 11]  and [111]  
axes, respectively (fig.2). 
 
Rietveld refinement of neutron powder diffraction data identified two types of C-C bonds 
related to short 'double bonds' (1.40 Å) and long 'single bonds' at 1.45 Å. The double 
bonds, also known as 6:6 bonds, fuse two hexagons together whereas the longer 
hexagon:pentagon fusions are known as 6:5 bonds. The experimentally determined 
structure comprises a majority fraction of molecules rotated by φ~98o from the so-called 
standard orientation, so that optimization of intermolecular interactions occurs with 
electron-rich double bonds lying over electron-deficient pentagonal faces of neighboring 
molecules. A co-existing minority orientation is only slightly less energetically favorable 
(by ~11 meV) and is characterized by the alignment of 6:6 bonds parallel to hexagonal 
faces of neighbors with a rotation angle of φ~38o from the standard orientation. 
 
 
 
 

 



 

 

 

 

 

 

 

 

 

 
Figure 2. Elastic scattering from C60 measured on the DCS at 1.8 Å, in 
“medium resolution” mode, above and below the 260 K order-disorder 
phase transition. The counting time was 2 hours. To the right is a view of 
the unit cell of the simple cubic low temperature phase of C60. 

 
Inelastic neutron scattering (INS) measurements have identified librational peaks at ~2.5 
meV at 100 K (and we will perform similar measurements), while motional narrowing of 
lines in 13C NMR spectra was also observed. The dynamics in the primitive cubic phase 
were initially attributed to jumps between the almost degenerate orientations, via 60o 
hops about <111> axes. This however gives rise to a uniaxial reorientation where only 
three of the 60 equivalent orientations are visited. Alternatively the reorientation can be 
thought of as occurring via ~36o rotations about <110> axes. Two successive hops about 
the same axis are unfavorable as this would place a pentagon perpendicular to the [111] 
direction. The resultant pseudo-random sequence of uniaxial reorientations has a quasi-
isotropic nature and all 60 equivalent orientations can be accessed. On the assumption 
that this is the dominant reorientational mechanism, a cosine potential can be used to 
approximate the uniaxial rotational potential.  
 
On cooling from 260 K to ~90 K, the fraction of molecules in the majority 98o orientation 
increases from roughly 60% to ~83.5%, whereas below 90 K the fraction of molecules in 
the 98o orientation remains constant at ~83.5% because the molecules now have 
insufficient energy to overcome the potential barrier separating the two orientations. A 
cusp in the rate of change of lattice constant with temperature is observable at the same 
temperature, as shown in Fig.3. The dynamics of the C60 molecules are extremely limited 
performing only small amplitude librational motion. Heat capacity measurements have 
identified this as a subtle transition in comparison to the high temperature first-order 
transition. The onset of orientational glass behavior is attributed to molecular 
orientational disorder which is frozen in, as a consequence of the long relaxation time of 
the molecular reorientations. 
 

1.8 Å med res. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Evolution of the cubic lattice constant for C60 as a function of 
temperature. A first order phase transition occurs at 260 K that is 
accompanied by a discontinuous jump in the lattice parameter. A cusp is 
discernible at 90 K, as highlighted in the inset. 

 
The neutron has several properties that enable scattering experiments to measure 
properties of materials that other techniques can measure with much less precision or not 
at all. Neutrons with wavelengths on the order of interatomic spacings also possess 
energies on the same order as those characteristic of phonons and intermolecular 
interactions; for example, a 1.8 Å neutron has an energy of ~25 meV (~200 cm-1). This 
means that structural and temporal information can be measured simultaneously. 
 
The reader is reminded that the scattering of neutrons is usually treated as the sum of two 
parts, known as coherent and incoherent scattering. To understand why such a separation 
is performed recall that the strength of the scattering from nuclei of the same element can 
vary (and generally does vary) with spin and/or isotopic species. Hence when a neutron is 
scattered by a collection of nuclei the interference between the different scattered waves 
is normally neither complete nor completely absent. For this reason the double 
differential cross section 2[d / d d ]σ Ω ω , which describes the probability that neutrons are 
scattered into solid angle dΩ and energy transfer window d( ω� ), is normally separated 
into two terms. The first term is the coherent part, which contains all of the interference 
effects such as Bragg scattering and small angle scattering. The second term is the 
incoherent scattering, which represents the scattering from individual nuclei and is 
approximately isotropic. For a single element 2[d / d d ]σ Ω ω  can be expressed as  

 
2

f
coh inc inc

i

d 1 k
[ S(Q, ) S (Q, )]

d d 4 k
σ = σ ω + σ ω

Ω ω π
 (1) 

where ki and kf are the magnitudes of the initial and final neutron wavevectors, σcoh and 
σinc are the coherent and incoherent scattering cross sections, and S(Q, )ω and incS (Q, )ω  



are the corresponding scattering functions which depend only on the momentum transfer 
Q�  (or wave vector transfer Q) and the energy transfer ω� . (Note that in general Q is a 

vector but since we shall be working with a cubic symmetry powder, which has no 
preferred orientation, all that need concern us in this experiment is the magnitude of the 
vector.) The most important incoherent scatterer is hydrogen for which σinc= 80 
barns/atom whereas σcoh is only 1.76 barns/atom (1 barn = 10-24cm2). Since the 
incoherent scattering cross section of hydrogen is much larger than those of almost all 
other nuclei, it is often reasonable (as a first approximation) to neglect the coherent 
scattering in systems that contain a relatively large fraction of hydrogen atoms. Carbon, 
on the other hand, is mostly a coherent scatterer with σcoh = 5.55 barns/atom and a 
negligible incoherent cross section necessitating the use of the ‘incoherent 
approximation’ when relating the one-phonon part of incoherent scattering cross section 
to the generalized vibrational density of states. This is essentially a statement that an 
integral of the double differential cross section, for a coherent scatterer, over a 
sufficiently large Q-range is approximately equal to its incoherent counterpart.  

 
Elastic neutron scattering is scattering with no change in neutron energy, i.e. 
with 0ω =� , and inelastic neutron scattering is scattering with a change in neutron 
energy, i.e. with 0ω ≠� . On the other hand, quasielastic neutron scattering (QENS) 
involves the Doppler-like broadening of otherwise elastically scattered neutrons due to 
reorientational or diffusive motions of atoms in the target material. Thus QENS is a 
special kind of inelastic neutron scattering. In this experiment we shall use elastic, 
inelastic and quasielastic neutron scattering to obtain a physical description of the phase 
change and dynamics of C60 at ~260 K, and to gain insights into the origin of the diffuse 
scattering observed in the powder diffraction data (figure 2).  
 
We shall first describe the sample to be used for the experiment, and the equipment that 
will be used to bring samples to the desired measurement temperature. The next section 
gives a brief discussion of the spectrometer as well as matters to be considered in 
choosing the incident wavelength for this experiment. We then describe the reduction of 
the data to obtain the scattering functionS(Q, )ω , and we follow with some words about 
the scattering that is expected for the two phases. This then sets the scene for the analysis 
and discussion of the experimentally measured scattering function. 
 
 
 
 
 
 
 
 
 

Can you explain the usefulness of deuteration, given that σcoh(deuterium) and 
σinc(deuterium) are 5.6 barns/atom and 2 barns/atom, respectively? 



II. The sample 
 
Prior to the experiment ~15 grams of the C60 sample will have been loaded into a tall 
(10cm, diameter 1.3 cm) aluminum cell with some helium exchange gas and press sealed 
with indium wire. At the start of the experiment we shall mount the sample in a closed 
cycle helium refrigerator, and we shall decide on an initial temperature set point and 
wavelength. Through the night we shall collect data at the initial temperature and 
wavelength, and at other temperatures and/or wavelengths. 

 
To reduce the data we will need a detector normalization file obtained using a sample of 
vanadium metal, plus a run with the beam closed (a type of background). These runs will 
have been performed before the start of the summer school since there will not be time to 
complete them during the school.  

 
 
 

III. The spectrometer 
 
We shall be performing this experiment using the Disk Chopper Spectrometer (DCS), 
which is a so-called “direct geometry” (fixed incident energy) time-of-flight 
spectrometer. In this type of instrument (figure 4) bursts of monochromatic neutrons 
strike the sample at equally spaced times. The energies of the scattered neutrons are 
determined from their arrival times at the detectors, since we know when the pulses were 
created as well as the distances DPS from the pulsing device to the sample and DSD from 
the sample to the detectors. There are two ways to produce a monochromatic pulsed 
beam at a steady state neutron source. One method is to use a single crystal to 
monochromate the white beam and a mechanical “chopper” to pulse it; the other method 
is to use multiple choppers, such as the seven (!) choppers of the DCS. 

 
 

Apart from indium, what materials might be used to seal sample containers? 
 

A monochromatic pulsed beam of neutrons can in principle be created using two 
choppers.  How does that work? Can you think why more than two choppers 
might be needed and/or desirable? 

Why do we typically use aluminum for sample containers and cryostat windows? 
 

Why do we use vanadium to normalize the data from different detectors? Hint: 
σcoh= 0.02 barns/atom, σinc= 5.19 barns/atom. 
 



Given the initial and final energies of the neutrons, Ei and Ef, the energy transfer 

i fE Eω = −�  is trivially obtained. Knowing the scattering angle 2θ we can also calculate 
the magnitude of the momentum transfer to the sample, Q� : 

 2
n i f i f( Q) 2m E E 2 E E cos 2� �= + − θ� ��  (2) 

where mn is the mass of the neutron. (This follows from the definition i fQ k k� �

�� �� ���
 and 

the relationship between the magnitude of a neutron’s wave vector, k, and its energy E: 
2 2

nE k / 2m� � .) 
 
The data acquisition system separately accumulates neutron counts for each of the 913 
DCS detectors. Furthermore the time between pulses, T, is normally divided into 1000 
time channels of equal width ∆t = 0.001T and each neutron event in a given detector is 
stored in one of these time channels according to its time of arrival at the detector. Thus 
the data acquisition system generates a two-dimensional array of counts I(i,j) as a 
function of detector index i and time channel index j. This array is accumulated in a 
“histogramming memory” which is resident in the data acquisition computer and 
reflected to the instrument computer. At the end of each run cycle the array is saved, 
along with other pertinent information, to the hard disk of the instrument computer. 
 
At the DCS we shall first mount the sample on the sample table, taking care to position it 
correctly with respect to the incoming beam; to confirm the positioning of the sample we 
may use a Polaroid camera or a TV camera system adapted for use with neutrons. We 
shall bring the sample to its measurement temperature having connected the temperature 
controller to the instrument computer so that we can record the sample’s temperature 
throughout the experiment.  
 

Detector at scattering
angle 2θ

SP

known
distance DSD

known
distance DPS

2θ

D

Figure 4. A schematic 
illustration of the 
scattering geometry for a 
direct geometry time-of-
flight spectrometer such 
as the DCS. 



An incident wavelength will then be selected, together with other instrument parameters 
such as the “master speed” of the choppers. The choice of wavelength is critical and 
several factors must be considered. These include intensity at the sample (which peaks, 
remaining roughly constant, between ~2.5 and ~4.5 Å, see Appendix A), the width of the 
elastic energy resolution function (which roughly varies as 1/λ3), the available Q range 
(which varies as 1/λ), and concerns about “frame overlap” problems. A related 
consideration is the available range in sample energy gain (neutron energy loss). 

 
Once the sample is at temperature, with the choppers phased, we will be ready to define 
the measurements to be performed through the night. We shall define a “sequence” 
consisting of several “runs” plus at least one change of sample temperature and probably 
wavelength. We shall also define the individual runs. Each run is divided into a set of 
“cycles”. At the end of each cycle the temperature is recorded and the data are backed up 
to the disk. Having defined the runs we shall start the overnight sequence of 
measurements. Next day we shall stop the measurements and start into the data reduction. 
 
In the experimental runs we shall collect intensity histograms I(i,j) for C60 at a couple of 
temperatures. Using previously acquired intensity histograms for a vanadium sample and 
for a “dark count” run with the beam shutter closed, we shall reduce the data to obtain the 
double differential scattering cross section 2[d / d d ]σ Ω ω , the scattering function S(Q, )ω , 
and various cuts in both Q and ω, and the generalized phonon densities of states g(ω).  
 

IV. Data reduction 
 
In this section we shall simply indicate some of the more important steps in the data 
reduction process.  We shall go into greater detail in our discussions at the time that the 
data reduction takes place. 
 
The measured scattering from the C60 sample has components from the intrinsic 
scattering from the sample and background intensity. Before doing any data analysis we 
need to subtract a time independent background from each of the runs. 
 

 
 
Neglecting effects such as self-shielding and multiple scattering the scattering in detector 
i and time channel j may be related to the corresponding double differential cross section 

2
ij[d / d dt]σ Ω  (note that this is per unit time, not energy) in the following fashion: 

Where does the time independent background come from? 

What is the maximum theoretical sample energy gain that can be measured when 
the incident energy is Ei, and how long would it take to measure the intensity of 
neutrons scattered with this change in energy? 



 
2
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m ij
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I(i, j) t N

d dt
� �σ= ⋅ ∆Ω∆ ⋅ ⋅η� �η Ω� �

 (3) 

where ∆Ω, the solid angle subtended by detector i, and ∆t, the width of time channel j, 
are (for these measurements) presumed to be independent of i and j respectively, Nm is 
the number of sample molecules in the beam, ηij is the efficiency of detector i for 
neutrons detected in time channel j, and IBM and ηBM are respectively the counts and the 
efficiency of the beam monitor (situated upstream of the sample). 
 
Since we are not trying to extract an absolute cross section we can neglect the 
multiplicative constants in the above equation, but we should not ignore the detector 
efficiency function ηij. Since all of the detectors are to first order identical it is not 
unreasonable to treat ηij as the product of two terms, a function ηi0 which represents the 
efficiency of detector i for elastically scattered neutrons and a detector-independent 
function fj that describes the energy dependence of the efficiency of the detectors. The 
correction for differences in detector response, i.e. the determination of ηi0, is performed 
using the results of a measurement with a vanadium sample. 
 
The correction of the data for the energy dependence of the efficiency is achieved by 
calculation, knowing the various factors that affect the probability that a neutron is 
absorbed within a detector. 

 
To improve statistics, in some instances, we may define several detector groups, each of 
which includes detectors within a specified range of angles. The differential cross section 

2[d / d dt]σ Ω  for all detectors in a group will be summed and divided by the number of 
detectors in the group. Having obtained a quantity proportional to 2[d / d dt]σ Ω  we must 
now compute 2[d / d d ]σ Ω ω  and finally S(Q, )ω . Since a neutron’s energy E is related to 
its time-of-flight t over a fixed distance as 2E t−∝ , it follows that 3dE t dt−∝ . Hence 

2 2 2 2
3

f f

d d d dt d
t

d d d dE d dt dE d dt
� �� � � �σ σ σ σ∝ = ∝	 
� � � �Ω ω Ω Ω Ω� � � �� �

          (4) 

To obtain S(Q, )ω we simply divide by kf (see eq. 1). Equivalently we multiply by 
another factor of t. 

 
If a system in thermodynamic equilibrium can exist in a number of thermodynamic states 
and we consider two such states separated by an energy difference ω� , the probability 
that the system is in the lower energy state is greater by a factor exp( / kT)ω�  than the 
probability that it is in the higher energy state.  From this it can be shown that for systems 
in thermodynamic equilibrium the scattering function S(Q, )ω  satisfies the so-called 
“detailed balance” relationship: S( Q, ) exp( / kT)S(Q, )− −ω = − ω ω� . Since we shall be 
fitting the data to a theoretical form that is symmetric in ω�  we shall first “symmetrize” 
the experimental S(Q, )ω  by multiplying it by exp( / 2kT)− ω� . 

What are these factors? 



 
Having reduced the experimental data to a symmetrized scattering function it is time to 
relate the results to theory. 
 

V. Theory 
 
The reorientational character of diffusive motion in the high temperature phase of C60 is 
reflected in the Q dependence of the quasielastic scattering. A model in which the 
rotations of adjacent molecules are uncorrelated and individual molecules undergo 
rotational diffusion about their fixed centers follows. In this section we shall revert to 
using the subscript “coh” and we shall treat Q as a vector. 
 
In a classical treatment the angular motion of each molecule satisfies the differential 
equation (Fick’s Law/Brownian diffusion): 

 2
R 0 0D p( , , t) p( , , t)

tΩ
∂∇ Ω Ω = Ω Ω
∂

, (5) 

where DR is the rotational diffusion constant, 2
Ω∇ is the Laplacian operator in the space of 

Euler angles Ω, and 0p( , , t)Ω Ω  is the probability that a molecule has orientation Ω at the 
time t, having had the orientation Ω0 at time 0. This model implies the molecule tumbles 
through a continuum of orientational angles rather than jumping between discrete 
orientations. A powder average can then be expressed as a sum of Lorentzians 
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where  
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�
j  is a spherical Bessel function, and R is the radius of the C60 molecule. The coefficients 

�
a  are in this case given by 

60

'
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(cos )
=

= θ� � nn
n n

a P      (8) 

where 
�

P  is a Legendre polynomial and 'nnθ  is the angle between the position vectors 
joining the molecular center to atoms n and n' within a single molecule. The high 
symmetry of the C60 molecule means that all odd- �  and many even- �  terms are 
identically zero. The only terms that significantly contribute to the scattering in the Q-
range of these experiments are those with � =6, 10, 12, 16, 18 and 20 for which the sum 
over the 

�
P  takes the values 6.3, 224, 31, 123, 496 and 90, respectively. 

Is symmetrization of S(Q, )ω  likely to be a larger effect at low or high 
temperatures? 



 
Figure 5. The expected quasielastic intensity and equivalent single 
Lorentzian width, as a function of momentum transfer, for a rotationally 
diffusing C60 molecule. 

 
Even though the quasielastic scattering is a sum of Lorentzians, the original literature on 
this subject approximates this as a single Lorentzian (FWHM= 2/τ

�
) and this was 

sufficient for the quality of those data. The integrated intensity and equivalent single 
Lorentzian width, according to the rotational diffusion model, eqn. 6, are shown in fig. 5. 
It may be that you will need to include more than one Lorentzian when fitting your data, 
plus a Gaussian to account for any elastic Bragg scattering contributions. Writing 

1 6= τR NMRD  the value of DR can be compared with NMR correlation times τNMR: 12 ps 
at 300 K and 9 ps at 283 K. Activation energies derived from NMR range from 42(9) 
meV to 60(5) meV. 

 
On cooling through the 260 K transition the quasielastic scattering is replaced by inelastic 
features and the diffuse scattering is different. Apart from an angular Debye-Waller 
factor, and an extra thermally averaged correlation function, the energy integral over the 
librational peaks follows eqn.6 with an extra ( +1) � � factor favoring the higher � -terms. 
The librational peaks soften and broaden on heating. The intensity variation of these 
peaks follows that expected for a simple harmonic oscillator  
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      (9) 

of frequency ω0at temperature T. This is in contrast to the librational frequency that 
softens much more than expected. 
 

Can you use this information to define the origins of the diffuse scattering 
observed in the powder diffraction data? 



The librations themselves are a probe of the curvature of the rotational potential near the 
potential minimum. For example, a uniaxial rotational potential ( )V θ , can be expanded 
in a Fourier series as   
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Within the harmonic approximation, the energy of the librational excitation is given by 
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where I is the moment of inertia and 2 2B I= � is the rotational constant. For C60 , 
431 10I −×� kg m2 and 0.364B � µeV. 

 
With C60 we cannot really say that we have a single molecular axis since there are several 
local minima in the orientational potential, but we may assume that the index of the 
dominant term can be expressed by 2 hopn = π θ , where hopθ is an angle between adjacent 
minima in the orientational potential. Then 

        (2 )ω = π θ� hop ABV          (13) 
where VA, the activation energy for rotational jumps between adjacent minima, can be 
determined from a number of techniques and is on the order of 220-290 meV. One 
consistent view of the reorientation mechanism involves ~42o hops about 2-fold axes that 
are normal to the body diagonals. This model is almost isotropic. 
 

VI. Data analysis 
 
We will take a few detours on the route to obtaining a symmetrized form of the 
experimental scattering function, S(Q, )ω . We will sum data to obtain a view of the 
powder diffraction patterns at various temperatures and we will also sum to obtain a 
generalized vibrational densities of states that we will then compare to data taken on the 
FANS spectrometer and briefly discuss the significance of what is observed.  
 
The next step is to fit the S(Q, )ω  data above 260 K to a model. We suggest that you try 
fitting each Q group to the isotropic rotational diffusion model described in the previous 
section (i.e. an elastic delta function and a broader Lorentzian). In an actual experiment 
the scattering function is broadened with the instrumental resolution function so the 
model function must be numerically convoluted with the instrumental resolution 
function. Having fitted the experimental data to the model, the next step is to make plots 
of the Lorentzian line parameters as functions of Q.  
 



 
Perform a similar analysis for the lower temperature data; fitting a central Gaussian and 
two librational Lorentzian peaks. Plot the temperature dependence of the Lorentzian 
parameters, and fit a functional form (eqn. 9.) to the extracted intensities. Use eqn.12 to 
extract an activation energy. 

VII. Concluding remarks 
 
In section V we discussed a scattering function that corresponds to very simple model of 
coherent rotational diffusive motion. The situation is more complicated when a system 
displays more than one type of diffusive motion, or rotational axes. If the various motions 
are uncoupled, the intermediate scattering function is a product of the individual 
intermediate scattering functions so that the scattering function is a convolution of the 
scattering functions for the individual motions. The situation simplifies considerably if 
additional motions occur on very different time scales. Motions that are much slower than 
the time scale represented by the instrumental resolution show up as elastic scattering. On 
the other hand motions that are much faster give rise to an essentially flat background. 
Different instruments, with different dynamical windows and different resolution 
capabilities, are needed to observe such motions. For example motions that are too slow 
to see using the DCS may well show up if the sample is put on the backscattering 
spectrometer. Conversely motions that are fast by DCS standards can usefully be studied 
using the FANS facility. 
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(1) How well does the single Lorentzian fit? 
(2) Do the Lorentzian parameters behave similarly to fig. 5? 
(3) Can you extract an activation energy and rotational timescale? 
(4) Can you explain how the diffraction data and the QENS data relate to one 



 Appendix A. Instrument Characteristics for the Disk Chopper Spectrometer 

(http://www.ncnr.nist.gov/instruments/dcs) 
 
The white beam from the cold neutron source is cleaned of high energy neutron and 
gamma ray contamination using an “optical filter”. This is basically a bent guide which 
ensures that there is no line of sight from the source to points beyond the local shutter.  A 
cooled graphite filter removes short wavelength (~0.5 Å) neutrons that remain in the 
beam, permitting measurements at wavelengths down to roughly 1.5 Å. 
 
A clean, pulsed, monochromatic neutron beam is produced using seven disk choppers. 
Chopper speeds may be varied from 1200 to 20000 rpm. The pulsing and 
monochromating choppers have three slots of different widths. In principle this permits 
three choices of intensity and resolution at a given wavelength and master chopper speed.  
 
The measured intensity at the sample is reproduced below. Red and blue points (upper 
and lower plots) correspond to measurements using different chopper slot widths. 

 

 

Why are there dips in the measured flux at wavelengths near 3.335 and 6.67 Å?  
What’s going on around 2 Å? 



The resolution of the instrument is approximately triangular and essentially independent 
of beam height (10 cm) but depends on the width of the beam. Hence samples should 
ideally be tall and thin rather than short and fat. 
 
The measured elastic energy resolution, for the same choices of chopper slot width as in 
the intensity plot above, is shown in the figure below. Lines represent fits to the 
measurements.             

 
An oscillating radial collimator, inside radius 200 mm, outside radius 300 mm, blade 
separation 2°, is used to reduce the scattering from sample environment structures. 
 

 
There are 913 six atmosphere 3He detectors covering an essentially continuous solid 
angle of ~0.65 steradians and arranged in three banks: 
��Middle bank detector scattering angles range from -30° to -5° and from +5° to +140° 
��Upper and lower bank angles range from -30° to -10° and from +10° to +140° 

 
The flight distance from sample to detectors is 4010 mm. The flight chamber is purged 
with argon. 

Can you explain how the radial collimator works, and why it is 
oscillated? 

Why is the flight chamber purged with argon? 



 

Appendix B. Possible Experiments on the Disk Chopper Spectrometer 
 
Phenomena that can be investigated include: 
��Translational and rotational diffusion processes, where scattering experiments 

provide information about time scales, length scales and geometrical constraints; the 
ability to access a wide range of wave vector transfers, with good energy resolution, 
is key to the success of such investigations 

��Low energy vibrational and magnetic excitations and densities of states 
��Tunneling phenomena 
��Low Q powder diffraction 

 
Research areas include: 
��Chemistry --- e.g. clathrates, molecular crystals, fullerenes 
��Polymers --- bound polymers, glass phenomenon, confinement effects 
��Biological systems --- protein folding, protein preservation, water dynamics in 

membranes  
��Physics --- adsorbate dynamics in mesoporous systems (zeolites and clays) and in 

confined geometries, metal-hydrogen systems, glasses, magnetic systems 
��Materials --- negative thermal expansion materials, low conductivity materials, 

hydration of cement, carbon nanotubes, proton conductors, metal hydrides 

 

Appendix C. Some useful properties and relationships 
 

Neutron properties 
 
Mass:   1.660×10-24 g 
Electric charge: 0  
Spin:   ½ 
Magnetic moment: -1.913 nuclear magnetons 
 
Exact relationships 
 

h
mv

λ =   21
E mv

2
=   

2
k

π
=

λ
 

 
Approximate relationships 
 

2

81.8
E[meV]

( [ ])
=

λ Å
;    

3.956
v[mm / s]

[ ]
µ =

λ Å
;    2E[meV] 2.07(k[ ])= -1Å ;    -11 meV=8.1 cm  

 
 



 
 

Appendix D. Spin Incoherence 
 
The strength of the scattering of a neutron by a nucleus, i.e. the neutron scattering length,  
depends on the spin of the compound nucleus. For an isotope with nuclear spin I the 
combined “nucleus + neutron” spin, I′, has two possible values, I+ = I+1/2 and I− = I-1/2, 
with which we associate two possible scattering lengths b+ and b−. Each of the possible 
values of the combined spin has 2I′+1 possible spin states, i.e. 2(I+1/2)+1 = 2I+2 and 
2(I-1/2) +1 = 2I states respectively, for a total of 4I+2 spin states. 
 
If the neutron and nuclear spins are randomly orientated, all states are equally probable, 
and the probabilities of the combined + and - spin states are p+ = (I+1)/(2I+1) and 
p−=I/(2I+1) respectively. 
 
The mean scattering length, <b>, and the mean of the scattering length squared, <b2>, 
 

           <b> = p+b+ + p−b−      and     <b2> = p+(b+)2 + p− (b−)2 

 
are used to calculate the coherent and incoherent bound cross sections. These cross 
sections are defined as follows: 

             2
coh 4 bσ = π   and ( )22

inc 4 b bσ = π − . 
Working through the numbers for hydrogen and deuterium is instructive. The relevant 
scattering lengths for hydrogen are b+ = 1.086×10-12 cm and b− = -4.751×10-12 cm, 
whereas the values for deuterium are b+ = 0.951×10-12 cm and b− = 0.095×10-12 cm.  
 
 
 
 
 
 


