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Abstract 
 
Small-angle neutron scattering (SANS) will be used to determine the structures formed 
by a surfactant additive to a system of spherical silica particles dispersed in water.  The 
measurements will illustrate the advantage of neutron scattering using contrast variation 
technique. 
All aspects of the experiment, from the sample preparation and instrument setup through 
to the data treatment and interpretation will be briefly described and references given for 
more in-depth study. 
 



I. INTRODUCTION 
 
 
The mesoscopic nature of colloids, with its attendant energetic implications, along with 
their optical characteristics makes them ubiquitous in everyday activities and applications 
as well as highly useful systems for fundamental scientific studies.  Blood, ink, coatings 
(paint, paper, etc.), foods, detergents, and personal care products are just a few examples 
of commonly encountered colloidal suspensions.  In industrial applications they are 
extensively used in such things as liquid transport (particularly in processing stages), 
catalysis, mineral floatation, and enhanced oil recover.  Finally, highly monodisperse 
colloidal model systems can be used to probe fundamental equations involving interfacial 
energies and flow fields, or used as probes of microenvironments such as in 
microrheology to name just a couple of examples. The stability of these nanosize objects 
is often critical and not always well controlled.  In order to enhance their stability in 
dispersions against flocculation and settling, addition of surfactant and polymer to the 
formulation is often used.  We propose in this experiment to characterize the size and 
structure of a silica particle dispersion in which small amount of surfactant is added in 
order to increase its stability.  By a series of measurements we will detect and quantify 
the surfactant structure responsible for this enhanced stability. 
 
Monodisperse SiO2 nanocolloids in size range of 80-100 nm were synthesized following 
the Strober method i.e. by hydrolyzing tetraethyl orthosilicate (TEOS) in ethanol in the 
presence of ammonium.  The SiO2 nanoparticles have a polydispersity <10%, are 
negatively charged with an isoelectric point of ~2.5, and are stable over a wide range of 
pH varying from 5 to 11.  The surface charge density can be tuned by modifying the pH 
of the solution, with a surface charge of zero at the isoelectric point.  A cationic 
surfactant (CetylTrimethylAmmonium Bromide or CTAB) is added at a concentration 
~CMC (critical micellar concentration).  CTAB is expected to electrostatically attach to 
the silica surface to give an extended thickness of the order of 2-3nm [figure 1]. 
 

 
Figure 1: Schematic of CTAB absorption onto silica 



 
To determine the particle size and polydispersity, a diluted solution of dispersed silica 
particles (at 0.1 wt%) in D2O will be measured.  The surfactant structure, presumably an 
adsorbed organic bi-layer on SiO2 will be characterized using the contrast match 
technique, after accurate determination of the scattering length density of the colloidal 
SiO2.  
 
 
The Objectives of the Experiment are: 
 

• To determine the shape and average dimensions of the dispersed particles.  
This information will be derived from the shape, i.e. the Q-dependence, of the 
scattering pattern.  Since the particles are anticipated to be spherical, it will be 
necessary in order to characterize the size to measure the intensity over a Q-range 
that encompasses Q-values up to 2π/D, where D is the average diameter of the 
particles. 

 
• Determine the volume fraction of the dispersed particles. This information 

may be derived from the Q  0 limit of the scattering curve having scaled the data 
to absolute units of cross section per unit volume and from the Porod’s Invariant.  
This will require a wide Q range in order to properly integrate the area under the 
scattering curve 

 
• Determine, possibly, the presence or absence of interparticle self-

organization effects.  This will be done by identifying and analyzing deviations 
in the Q-dependence of the scattering from that expected for a non-interacting, 
dilute suspension of particles. 

 
• Determine the surface area from the Porod regime. This will be done by 

analyzing the high Q regime requiring measurements at Q well out in the tail of 
the scattering  

 
• Determine the scattering length density of the silica particle. This will be done 

by dispersing SiO2 in different D2O/H2O solvent mixtures, and by recording the 
total scattering intensity as a function of D2O content.   

 
• Determine the structure, presumably the thickness of the absorbed 

surfactant layer (using both a solvent contrast matched to the silica and one 
that is not). This will be done by analyzing the scattering curves of silica with 
and without surfactant (either in D2O or in contrast matched conditions) 

 
 
 
 
 
 



II. PLANNING THE EXPERIMENT 
 
 
Why use SANS? 
 
Generally, static light scattering and small angle X-ray scattering (SAXS) provide the 
same information about the sample: measurement of the macroscopic scattering cross-
section dΣ/dΩ(Q).  The contrast in light scattering arises from the difference in the light's 
refractive index for each phase in the sample.  The contrast in light scattering is typically 
much stronger than in SANS, requiring very dilute concentration of particles to avoid 
multiple light scattering.  In addition, the wavelength of light limits q < 0.002 Å-1.  Thus 
light scattering can be used to estimate the diameter of silica particle in dilute solution, 
but can not resolve the thickness of the absorbed surfactant layer.  The contrast in X-ray 
scattering arises in the variation in electron density between the phases.  The contrast is 
again stronger for X-rays than neutrons, but thinner samples often mitigate any multiple 
scattering.  X-rays are strongly absorbed by most samples, requiring thin walled glass 
capillaries to contain the sample.  Also, intense X-rays beams can cause irreversible 
sample damage altering the structure and chemistry of the studied solution.  This is 
especially the case for organic compounds such as polymer, lipids and surfactant.  In the 
present case, SAXS can be used to measure the data over the entire Q-range needed for 
this experiment and determine the size and shape of the silica particle, but again, 
characterization of the absorbed surfactant layer would be difficult and would require a 
more complex model. 
 
Given the stated objectives of the experiment and the decision to use neutrons, how do 
we go about preparing for the experiment to maximize our chances of success?  Here we 
discuss some of the issues that bear on this question. 
 
 
II.1 Scattering Contrast 
 
In order for there to be small-angle scattering, there must be scattering contrast between, 
in this case, the silica particles and the surrounding water.  The scattering is proportional 
to the scattering contrast, ∆ρ, squared where 
 

wp ρρρ −=∆    Scattering Contrast 
 
and ρp and ρw are the scattering length densities (sld) of the particles and the water, 
respectively.  Recall that sld is defined as 
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where V is the volume containing n atoms, and bi is the (bound coherent) scattering 
length of the ith atom in the volume V.  V is usually the molecular or molar volume for a 
homogenous phase in the system of interest. 
 
The sld’s for the two phases in the present case, silica and water, can be calculated from 
the above formula, using a table of the scattering lengths (such as Ref. 1) for the 
elements, or can be calculated using the interactive SLD Calculator available at the 
NCNR’s Web pages (http://www.ncnr.nist.gov/resources/index.html).  The sld’s for 
silica, CTAB and water (both H2O and D2O) are given below in Table 1. 
 
Table 1.  The scattering length densities (SLD’s) for the silica, CTAB, light water and 
heavy water.   
 
Material Chemical Formula Mass Density (g/cc) SLD (cm-2) 
Silica SiO2 ~2.2 3.4 x 1010

CTAB C19H42BrN 1 -.24 x 1010

Light water  H2O 1.0 -.56 x 1010

Heavy water D2O 1.1 6.38 x 1010

 
From Table 1 we see that scattering contrast for silica in H2O [proportional to (3.4 –(-
0.56))2 = 15.7] is ~ 2 times greater than in D2O [ (3.4 – 6.38)2 = 8.8].  However, this is 
not the only factor to consider.  One should also consider the concomitant incoherent 
scattering from each phase1.  The incoherent scattering contributes to an isotropic 
background that can obscure weak coherent scattering from the smaller structural features 
in a material.  Here we are interested in both small-scale structure and much larger scale 
structure.  Since the incoherent scattering from H2O is about 30 times greater than that 
from D2O, we elect to do the experiment using D2O as the solvent.  The contrast in D2O 
is quite adequate and the lower incoherent scattering background will make it easier to 
distinguish the Q-dependent coherent signal from the Q-independent incoherent 
background.  In addition, the lower incoherent scattering from D2O allows us to use a 
thicker sample, as we shall see next, which compensates for the lower coherent scattering 
contrast vis-à-vis H2O. 
 
 
II.2  Sample Thickness 
 
The next decision we face is how thick should the sample be?  Recall that the scattered 
intensity, Is(Q), is proportional to the product of the sample thickness, d, and the sample 
transmission, Ts, where Ts, the ratio of the transmitted beam intensity to the incident 
beam intensity, is given by 

aict
te Σ+Σ+Σ=Σ= Σ−      , T d

s  

                                                 
1 Incoherent neutron scattering has no counterpart in x ray or light scattering.  It arises from the interaction 
of the neutron with the nucleus, which is described by a scattering length that depends on the particular 
nuclear isotope and its nuclear spin state.     



where the total cross section per unit sample volume, Σt, is the sum of the coherent, 
incoherent and absorption cross sections per unit volume.  The absorption, or neutron 
capture, cross section, Σa, can be computed accurately from the tabulated absorption cross 
sections of the elements (and isotopes) if the mass density and stochiometry of the phase 
is known.  Σa is wavelength dependent, being linearly proportional to λ for nearly all 
elements.  The incoherent cross section, Σi, can be estimated from the cross section tables 
for the elements as well, but not as accurately because it depends somewhat on the atomic 
motions and is, therefore, temperature dependent.  The coherent cross section, Σc, can 
also only be estimated since it depends on the details of both the structure and correlated 
motion of the atoms in the material.   
 
The computations involved in estimated sample transmission are straightforward but 
tedious.  The task is made easier using the NCNR’s Web-based sld calculator which 
computes not only scattering length density, but also estimates the incoherent and 
absorption cross sections per unit volume.  Table 2 gives some of these results for silica, 
H2O and D2O. 
 
Table 2.  Macroscopic cross sections (i.e. cross sections per unit volume) computed with the sld 
calculator on the NCNR’s Web site for the solute and solvents in the experiment.  The values for the 
absorption cross sections are for a wavelength of 6 Å. 
  
 Σc (cm-1) Σi (cm-1) Σa (6 Å) (cm-1) Σt (cm-1) 1/Σt (cm) 
SiO2 0.234 0.000124 0.0126 0.2467 4.053 
H2O 0.260 5.37 0.0741 5.70 0.175 
D2O 0.518 0.136 0.000135 0.654 1.53 
 
The sample to be measured consists of approximately 0.1 % silica (by weight) in D2O, or 
~0.05 % silica by volume.  Hence the total cross section per unit volume for the 
suspension is .9995 (0.654 cm-1) + 0.0005 (0.2467 cm-1) = 0.6538 cm-1, and 1/Σt = 1.53 
cm.  Hence the optimal sample thickness2, the 1/e thickness, is 1.53 cm.  The 
corresponding thickness for the same volume fraction of silica in H2O is 0.175 cm.  
Hence the large incoherent cross section of hydrogen not only contributes a significant Q-
independent background, it also limits the optimal sample thickness.   
 
 
II.3  Required Q-Range 
 
For this experiment we know we will need to measure the intensity over a wide Q-range 
since the information we are looking for is distributed in the low and high Q regime.  To 
get a better idea of the required Q-range, we can use the SANS Data Simulator 
(http://www.ncnr.nist.gov/resources/simulator.html) to calculate the Q-dependence of the 
scattering for the case of non-interacting and randomly oriented monodisperse spherical 
particle.  From among the 20 different particle models currently included in the SANS 
                                                 
2 The scattered intensity is proportional to d exp(-Σtd) which has a maximum at d = 1/ Σt.  However, if Σi 
and Σa are small compared with Σc, d should be chosen to make T ~ 0.9 rather than 1/e = .37 to avoid 
multiple scattering. 



Data Simulator, we choose the Sphere model.  The documentation for this model can be 
found on the Web site at http://www.ncnr.nist.gov/resources/sansmodels/sphere.html.  A 
plot from the SANS Data Simulator for monodispersed, randomly oriented sphere is 
shown in Fig. 2. 
 
Notice in Fig. 2 that the scattering at larger Q is dominated by the solvent scattering from 
the D2O.  It will be necessary to correctly subtract this scattering curve in order to reveal 
the Q-4 power law characteristic of sharp interfaces. 
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Figure 2.  The simulated SANS from monodispersed, randomly oriented sphere with 
diameter D = 100 nm.  The dash curve includes the incoherent scattering from the D2O 
solvent. 
 
 
III.  COLLECTING THE DATA 
 
III.1  How to Configure the SANS Instrument 
 
Now that we know we want to cover as wide a Q-range as possible, we must decide how 
to configure the SANS instrument to do so efficiently.  Here again we can use a 
computational tool, called SASCALC, as a guide.  A schematic of the NCNR’s 30-m 
SANS instruments is shown in Fig. 3, and the instrument configuration parameters, and 
their allowed range for the NG-7 30-m SANS instrument, are listed in Table 3.  
 



 
Figure 3. Schematic diagram of the components of the NCNR’s 30-m SANS instruments. 
 
Table 3.  The instrument configuration parameters, and their range of allowed values, for the NG-7 

30-m SANS instrument. 
Variable Allowed Values 
Neutron wavelength 5 – 20 A  (determined by the rotational speed of the 

                  velocity selector) 
Wavelength spread (FWHM) 0.09, 0.11 or 0.22 (determined by the inclination of the 

velocity selector axis with respect to the beam direction) 
Number of neutron guides, Ng 0 – 8 (determines the beam collimation by changing the  

          distance of the source aperture from the sample) 
Source aperture diameter 1.43, 2.20 or 3.81 cm for Ng=0; 5.08 cm for Ng=1-8 
Sample-to-detector distance 
(SDD)  

100 – 1530 cm 

Detector offset 0 – 25 cm (detector translation perpendicular to beam to  
                  extend the Q-range covered at a given SDD) 

Sample aperture diameter 0 – 2.5 cm 
Beamstop diameter 2.54, 5.08, 7.62 or 10.16 cm 
Beam Attenuator 10 choices of beam attenuator thickness to reduce beam   

     intensity for sample transmission measurements  
 
For a given set of allowed parameters, SASCALC computes the corresponding Q-range 
and the beam intensity (n/sec) on the sample.  The Q-range for a particular configuration 
is determined by the choice of wavelength, detector distance and detector offset.  To 
reach the largest-Q limit of the instrument, the shortest available wavelength, 5 A, the 
shortest sample-to-detector distance, 100 cm, and the maximum detector offset, 25 cm 
have to be used.  The number of neutrons guides affects primarily the beam intensity on 
the sample.  In general, we choose the largest number of guides, to maximize the beam 
intensity on the sample, consistent with the desired Q-range.  In the present case, because 
of sample polydispersity and instrument resolution, the beam divergence in the high Q 
regime is not very important and we will use the following SASCAL choice:  
 
 
 



Instrument Configuration for large-Q portion of measurement range 
Wavelength:   6.0 Å ∆λ/λ: 0.11 (FWHM) 
Number of guides:   8 
Sample-to-Detector distance: 150 cm 
Detector Offset:  20.00 cm  
Intensity at sample: 2.987E+006 Counts/sec 
Qmin: 0.0212 Å-1     Resolution:   23.4% 
Qmax:     0.4023 Å-1     Resolution:    4.7% 
Horizontal Qmax:     0.3478 Å-1

Vertical Qmax:     0.2197 Å-1

Source aperture diameter:  5.08 cm  
Sample Aperture diameter:     1.2 cm 
Beam diameter at detector:     4.00 cm   
Beamstop diameter required:      5.08 cm, (2.0 in) 
Attenuator for transmission measurements:  No. 8 
Source aperture to sample aperture distance: 387.0 cm 
 
Next we consider how to configure the instrument to reach the low-Q end of the desired 
measurement range.  In this experiment we want to reach the low Q-values required to 
see at least the tail of the Guinier region.  We also require an instrumental resolution that 
will allow us to observe the minima of the form factor.  The Q-range and other 
parameters for this configuration is as follow: 
 
Instrument Configuration for low-Q portion of measurement range 
Wavelength:   6.0 Å ∆λ/λ: 0.11 (FWHM) 
Number of guides:   0 
Sample-to-Detector distance: 1530 cm 
Detector Offset:  20 cm  
Intensity at sample: 6 E+4 Counts/sec 
Qmin: 0.0021 Å-1     Resolution:   28.2% 
Qmax:     0.0418 Å-1     Resolution:    4.7% 
Horizontal Qmax:     0.0356 Å-1

Vertical Qmax:     0.0219 Å-1

Source aperture diameter:  2.22 cm  
Sample Aperture diameter:     1.2 cm 
Beam diameter at detector:     4.8 cm   
Beamstop diameter required:      5.08 cm, (2.0 in) 
Attenuator to use for transmission measurements:  No. 4 
Source aperture to sample aperture distance: 1627.0 cm 
 
 
III.2  What Measurements to Make 
 
In addition to measuring the scattering from the sample for the three instrument 
configurations described in the previous section, additional measurements are needed to 



correct for “background.” Counts recorded by the detector with the sample in place can 
come from 3 sources: 1) neutrons scattered by the sample itself (the scattering we are 
interested in); 2) neutrons scattering from something other than the sample, but which 
pass through the sample; and, 3) everything else, including neutrons that reach the 
detector without passing through the sample (stray neutrons or so-called room 
background) and electronic noise in the detector itself.  To separate these three 
contributions, we need three measurements: 
 
i) Scattering measured with the sample in place (which contains contribution from all 3 

sources listed above), denoted Isam; 
 
ii) Scattering measured with the empty sample holder in place (which contains 

contributions from the 2nd and 3rd sources listed above), denoted Iemp; and, 
 
iii) Counts measured with a complete absorber at the sample position (which contains 

only the contribution from the 3rd source listed above), denoted Ibgd. 
 
In addition to these three ‘scattering’ measurements, the transmission of the sample (the 
fraction of the incident beam intensity that passes through the sample without being 
scattered or absorbed) and that of the sample cell must also be measured in order to 
correctly subtract the contributions to the background and to calibrate the scattering on an 
absolute cross section scale (the procedure is discussed in Section IV - Data Reduction).  
The transmission is measured by inserting a calibrated attenuator in the incident beam (to 
reduce the direct beam intensity to an accurately measurable level) and measuring the 
direct beam intensity with and without the sample (or the sample cell) in position. The 
ratio of these two short measurements (typically 1-2 minutes each) is the sample (or 
sample cell) transmission. 
 
How the scattering and transmission measurements are used to reduce the data to a 
quantity, called the differential scattering cross section that is intrinsic to the sample, is 
described in Section IV (Data Reduction).    
 
 
III.3  How Long to Count 
 
A SANS experiment is an example of the type of counting experiment where the 
uncertainty, or more precisely the standard deviation, σ, in the number of counts recorded 
in a time t, I(t), is ( )tI=σ .  If the scattering is roughly evenly distributed over the 
SANS detector, then a good rule of thumb is that one should accumulate about 500,000 
total detector counts per sample measurement (assuming minimal background).  If the 
accumulated counts are circularly averaged, one obtains about 50 data points when 
plotting I(Q) versus Q.  This amounts to about 1000 counts per data point with a standard 
deviation of √1000 ~ 30 or an uncertainty of about 3 %, which is good enough for most 
purposes.   
 



A related question, is how long should the background and empty cell measurements be 
counted relative to the sample measurement.  The same ( )tI=σ  relationship leads to 
the following approximate result for the optimal relative counting times 
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Hence if the scattering from the sample is weak, the background should be counted for as 
long (but no longer!) as the sample scattering.  However, if the sample scattering count 
rate is, say, 4 times greater than the background rate, the background should be counting 
only half as long as the sample scattering.  
 
 
IV.  DATA REDUCTION 
 
Data reduction consists of correcting the measured scattering from the sample for the 
sources of background discussed in Section III.2, and multiplying the corrected counts by 
a scaling factor (to remove incidental differences between measurements such as the 
counting time and sample thickness) that puts the data on an absolute scale of scattering 
cross section per unit volume.  The measured neutron counts, I(Q),  recorded in a detector 
pixel in a time interval t are related to absolute cross section, dΣ(Q)/dΩ, through the 
expression 
 
 I(Q) = φ A ∆Ω ε t d T (dΣ(Q)/dΩ) + Ibgd,     ( 1) 
 
Where: 
   φ = the neutron flux (neutrons/cm2-sec) at the sample 
   A = the area of the beam incident on the sample  
   d = the sample thickness 
   T = the transmission of the sample (and its container, if there is one) 
   ∆Ω = the solid angle subtended by one pixel of the detector 
   ε = the detector efficiency, and 
   t = the counting time. 
   Ibgd = counts from sources not traversing the sample 
 
The incidental instrumental factors can be lumped together into one constant 
 
 Κ = φ A ∆Ω ε t        (2) 
  
and the intrinsic quantity, dΣ(Q)/dΩ, the differential scattering cross section per unit 
volume, is obtained by scaling the recorded counts  
 
 dΣ(Q)/dΩ = I(Q)/( Κ d T )       (3) 
 



We now go over the specific steps involved in extracting dΣ(Q)/dΩ from the raw data. 
Following equation (1), the raw scattered intensity measured from the sample, Isam, and 
the empty cell, Iemp, can be written as 
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where Tsample+cell and Tcell are the measured transmission of the sample (in its container) 
and the empty container, respectively.  From the above, the background corrected 
scattering, denoted Icor, is given by 
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The corrected counts, Icor, are proportional to the quantity of interest, namely the 
differential scattering cross section.  From the above equations, 
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The instrumental scale factor, K, will be determined from a measurement of the 
attenuated direct beam intensity, 
 

Κ=∆Ω= attenattendirect TtTI εφ A         (7) 
 
where Tatten is the transmission of a calibrated attenuator. 
 
 
V.  DATA ANALYSIS 
 
The measured intensity (corrected for background and put on an absolute scale) for any 
“particulate” system can be expressed as 
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where ρp and ρw are the sld’s of the silica particles and the D2O, respectively; Vp is the 
mean particle volume, and Np is the number of particles per unit volume.  P(Q) is the 
scattering form factor for the particles, 
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the square of the Fourier transform of the particle shape.  Finally, S(Q) is the structure 
factor (the inter-particle correlation factor) which is essentially the Fourier transform of 
g(r) the pair distribution function.  Since the volume fraction of silica particles in our 
sample is about 0.0005, it is reasonable to analyze the scattering in terms of randomly 
oriented, non-interacting particles (i.e. we neglect the structure factor in this case and set 
S(Q) = 1).  In this so-called dilute limit, the particles scatter independently, and the total 
scattering is the sum of the scattered from each particle.   
 
 
Particle Volume Fraction Determined from Invariant or I(0): 
- For all two phase systems having uniform scattering length densities in each phase, the 
volume fraction φ can be determined from the integration of all the scattering 

φ(1− φ) =
QI

2π 2∆ρ 2         (10) 

where the invariant is determined by 

QI ≡ q 2 dΣ
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(q)dq
0

∞

∫         (11) 

 
- For dilute systems, and for particle with a uniform scattering length density, the forward 
scattering is simply: 

dΣ
dΩ

(0) = φVP∆ρ 2         (12) 

where φ is the volume fraction of particles (φ = NpVP), VP is the average particle volume, 
and ∆ρ2 is the scattering length density contrast squared.   
 
Determination of the specific surface area: 
The specific surface area is determined from small angle scattering data using the Porod’s 
approximation: 

( ) 422lim QSQI
Q

ρπ ∆=
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       (13) 

where S is the surface area per unit volume. 
 
Contrast matched point determination: 

As expressed in equation 8, the scattering intensity 
Ω

Σ
d
(Q)d  is proportional to the square 

of the scattering contrast .  To determine the scattering length density of the 
particles, we have to disperse them in different D

2
p )( wρρ −

2O/H2O solvent mixtures and record the 
squre root of the total intensity as a function of the solvent scattering length density or 
equivalently, D2O content (Figure 4). 
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Figure 4: Square root of the intensity as the function of the solvent D2O content.  The 
contrast match point is determined where the scattering intensity falls to 0. 
 
 
Sphere form factor 
In the limit for randomly oriented particles expression (8) reduces to  0→Q

).3/Rexp(-Q(Q) 2
g

2∝I     (15) 
where Rg is the radius of gyration of the particle and is valid for any particulate system 
regardless of shape.  Equation 15 is an example of Guinier’s Law which is valid only for 
Q Rg < 1. For a homogenous sphere it can be shown that Rg

2 = 3R2/5. 
This expression is easy to use and allows one to quickly extract the radius of gyration of 
any particle from the low Q region by plotting ln(I) versus Q2 without any knowledge of 
the particle morphology. 
 
In the present case however the size of the silica particles (~100nm) is too large to be able 
to use the Guinier approximation in the SANS Q range defined above except as a rough 
estimate.  To use that approximation, we would need a configuration using the lenses, 
and for much larger particles, USANS data would be required which can go to Q min = 5 
10-5Å-1. 
 
Thus, to analyze our data it will be necessary to use the full expression of the scattering 
from spheres.  The general expression for the form factor of a sphere of diameter 2R, is 
given by 
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We will have to take into account the sample polydispersity, the instrumental resolution 
and the incoherent scattering from the sample, as pointed out in Section II.3.  The later 



will be done by including a constant as a fitting parameter since the incoherent scattering 
is a constant Q independent background term. 
 
 
Polydisperse spheres model: 
The schematic of our system consists on a sphere of radius Rp and scattering length 
density ρp, covered by a shell of thickness t with a scattering length density ρs (in the case 
of absorbed surfactant) in a solvent of scattering length density ρsolv. (see figure 5) 
 

 
Figure 5 : Representation of the core shell model. 
 
In practice, colloidal particles are never identical in size, there is always a distribution in 
size due to synthesis methods.  In order to take into account these “imperfections”, we 
will use the polydisperse core shell model (called polycoreshell model in the SANS 
fitting package) to fit our data.   The form factor P(Q) of polydisperse core shell is given 
by: 

( ) ( )∫
∞

=
0

1)( drQrPrSchQP   

where is the Schultz distribution (polydispersity in size) which is both physically 
realistic as well as mathematically tractable, and where 

)(rSch
( )QrP1 is the single form factor of 

a core shell.  These analytical expressions can be found in reference 2.  Note that the 
model assumes a distribution only in the particle core size while the shell thickness is 
fixed. 
In figure 6, we give an example of how polydispersity in size affects the scattering data 
from an ideal sphere form factor (in this case we fix the shell thickness t = 0) 
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Figure 6: effect of size polydispersity on scattering curves from spheres 
 
Using this polycore shell model, we can first simulate the scattering curves from silica 
particles covered or not by a surfactant layer.  According to figure 7, characterization of a 
thin absorbed layer should be possible especially in contrast match condition.  
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Figure 7: effect of a shell on scattering curves from polydisperse spheres 
 
 
However, independently of the sample quality, other important aspects can considerably 
affect the validity of the data analysis.  As explained in equation (8) the scattering 
intensity is proportional to the scattering contrast and particle volume fraction.  So high 
scattering contrast and high particle content will lead to higher count rates and shorter 
accumulation times.  However, multiple scattering (neutrons scattering more than once in 
the sample) and particle-particle interactions will dramatically alter the scattering curve 
(Figure 8), leading to inexact values for the radius of gyration and sample polydispersity. 
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Figure 8: effect of multiple scattering and particle-particle interactions on scattering 
curves from spheres 
 
Another limiting factor in observing the minima of the form factor is the instrument 
resolution.  Size and divergence of the beam, wavelength distribution and detector pixel 
size will contribute to smearing the ideal sample scattered intensity and will have a 
significant effect on the measured scattering data (Figure 9). 
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Figure 9: effect of instrumental resolution on scattering curves from polydisperse spheres 
 
 
In conclusion, much care should be taken when performing a SANS experiment if one 
wants to quantitatively understand the measurements.  
 
 
 
VI.  REFERENCES AND OTHER RESOURCES 
 
 [1] V.F. Sears, Neutron News, Vol. 3, No. 3, p 26 (1992). 
 [2] P. Bartlett and R. H. Ottewill, J. Chem. Phys. 96 (4) 1992. 



 [3]S.-M. Choi, “SANS Experimental Methods,” NCNR Summer School 2000, 
http://www.ncnr.nist.gov/programs/sans/tutorials. 
 [4] R.-J. Roe, Methods of X-Ray and Neutron Scattering in Polymer Science, Ch. 1.4, 

Oxford University Press, 2000. 
 [5]J.S. Higgins, and H.C. Benoit, Polymers and Neutron Scattering, Oxford University 

Press, Oxford (1996). 
 [6]Neutron, X-ray and Light Scattering: Introduction to an investigative Tool for 

Colloical and Polymeric Systems, P. Lindner, T. Zemb editors, North Holland 
Publishers (1991) 

 [7]A. Guinier, and G. Fournet, Small Angle Scattering of X-Rays; John Wiley and Sons: 
New York,(1955). 

 [8]L.A. Feigin, D. I. Svergun, Structure Analysis by Small Angle X-ray and Neutron 
Scattering; Plenum Press, NY (1987) 

 [9]G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, Dover 
Pulications, Mineola, NY (1978) 

 [10]J. Schelton, and W. Schmatz,, J. Appl, Cryst. 13, 385(1980) 
 [11]R.H. Ottewill and A.R. Rennie, Modern Aspects of Colloidal Dispersions, Kluwer 

Academic Publishers (1998) 
 [12]R. J. Hunter, Foundations of Colloid Science Vol I and II, Oxford University Press, 

Oxford, (1987 – 1989 for Vol II) 
  

http://www.ncnr.nist.gov/programs/sans/tutorials

	Abstract
	II.1 Scattering Contrast
	II.2  Sample Thickness
	II.3  Required Q-Range

	III.  COLLECTING THE DATA
	III.1  How to Configure the SANS Instrument
	Instrument Configuration for large-Q portion of measurement 
	III.3  How Long to Count

	IV.  DATA REDUCTION
	Sphere form factor


