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OBJECTIVES

1. To understand what is measured in a neutron inelastic scattering experiment.
2. To gain a basic understanding of the principles of Triple-Axis Spectroscopy (TAS).

3. To gain experience with the use of a Position Sensitive Detector (PSD) to obtain

neutron elastic and inelastic scattering data.

4. To learn how to analyze the TAS data obtained to extract physical information about

the system being studied.

5. To study the magnetic phase transition and associated dynamics in the geometrically

frustrated antiferromagnet ZnCryQOy.



I. INTRODUCTION

It is the ability of the neutron to exchange a measurable amount of energy with a liquid
or solid sample that makes it useful as a probe of the various dynamical phenomena in
condensed matter systems.[1] Typical neutron energies available at a reactor source can
range from 100 — 500 meV (hot), to 5 — 100 meV (thermal), to 0.1 — 10 meV (cold), where
1 meV = 103 eV = 8.06 cm !. A number of different methods can be used to prepare a
monochromatic (or monoenergetic) neutron beam having energies that are comparable in
magnitude to, for example, those of the lattice vibrations in a solid (phonons), the spin
excitations in a magnetic system (magnons), the torsional, bending, or stretching vibrations
of a polymer chain, or the rotational motions in a molecular solid (librons). As a result it is
usually quite easy to detect the change in the neutron energy after scattering from a sample
since the energy transferred to or from the sample AE = E; — Ey generally represents a
significant fraction of the initial and final neutron energies F; and Ej.

The energy AFE transferred during the interaction between neutron and sample can be
used to create an excitation (such as a phonon or magnon) of the system, in which case the
neutron loses an amount of energy AFE equal to the energy of the excitation. Conversely, the
same excitation can give up its energy to the neutron, in which case the excitation is said
to be annihilated. In either case, the physics of the excitation as revealed by the absolute
change in the neutron energy is the same. The energy transfer AFE is often expressed as a

frequency of vibration through the relation
AE = hw, (1)

where 27h = h = 6.626 x 103" Joules-seconds is Planck’s constant, and w is the frequency
of vibration of the excitation. Since frequency and time are inversely related, the neutron

energy transfer hw reflects the time scale of the dynamics.



Question: Estimate the value of (AE/E;) required to observe an optic phonon
with an energy of 10 meV using x-ray, light, and neutron scattering techniques

assuming the respective values of 7,000 eV, 2 eV, and 30 meV (0.030 eV) for

E;. Which technique is best suited for this measurement?

In addition to having energies that are well adapted to the study of a large variety of
dynamical phenomenon, neutrons also possess the ability to provide, simultaneously, unique
information about the geometry of these dynamics through the exchange of momentum with
the sample. This is done by measuring in what directions (i. e., through what angles) the
neutrons scatter. The momentum of a neutron varies inversely with the neutron wavelength
A, and hence an accurate measure of the momentum transferred between sample and neutron
during the scattering process will in turn provide information about the spatial scale of the
dynamics being probed. Such an accurate measure is relatively easy to obtain as long as

the neutron wavelength is comparable to the length scale of the motions of interest.

Question: The relationship between wavelength and energy for the neutron
is given by:

h2
T amA2

= 81.81(meV - A%)/)\?, (2)

where m = 1.675x1072* grams is the mass of the neutron. Using this equation,
estimate the wavelengths corresponding to hot, thermal, and cold neutrons
available at a reactor source. How do these wavelengths compare with the

length scales associated with the dynamics or motions you are specifically

interested in?

In the following sections we will discuss the partial differential scattering cross section,
which is the actual physical quantity that is measured by neutron spectroscopy. We then

outline the basic operating principles behind a triple-axis spectrometer (TAS), the concept



for which Bertram Brockhouse earned the 1994 Nobel prize in physics shared jointly with
Clifford Shull.

A. The Partial Differential Scattering Cross Section (mdfi—gEf

Most neutron spectroscopic techniques can be reduced to a measurement of what is called
the partial differential scattering cross section, or d*c/dQUdE}, as a function of the neutron
energy transfer hw and the neutron momentum transfer @ The quantity Cj is known as
the scattering vector, and has units of inverse length. In the scattering process between the

neutron and the sample, the total momentum and energy of the system are conserved, i. e.

hw = E; — B; = AE. (4)

Hence the energy or momentum lost (or gained) by the neutron when it scatters from a
sample is gained (or lost) by the sample. In the previous equation, the quantities k: and
k} refer to the initial and final neutron wavevector, respectively, and point in the direction
of the incident and final (scattered) neutron beam. The relationship between k., k}, and Q
can be represented by the scattering triangle shown in Fig. 1. The magnitude of the neutron

wavevector k is 27/, and is related to the neutron energy via

E = % =2.072(meV - A)k?, (5)

From this last equation, one can obtain the second equation in Fig. 1 which relates the
energy transfer to the magnitude of the initial and final wavevectors. The angle between
kz and l;f is commonly denoted by 26, and thus represents the total angle through which a
neutron is scattered by the sample. Note that the convention followed in this summer school
is such that the energy transfer fiw is positive when F; > FEy, i. e. when the neutron loses
energy to the sample during the scattering process. This convention of defining when hw is

positive varies among neutron scattering facilities.
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Fig. 1. Scattering triangle. The neutron is scattered through the angle 20 and the scattering

vector, @, is given by the vector relationship Q = E, —k i

The partial differential scattering cross section is defined as the total number of neutrons
scattered per second by the sample into a unit of solid angle df2 in a given direction, having
final energies E that lie between F; and Ey 4+ dE;. It is normalized by the neutron flux
incident on the sample ®; (measured in neutrons/sec/cm?) so that it has units of area/(solid
angle) /energy. If one integrates the partial differential scattering cross section over all solid
angle (47 steradians), and all final energies (0 < Ey < 00), one obtains the total number
of neutrons scattered out of the beam per second by the sample. (This assumes that the
absorption of neutrons by the sample, which can often occur, is negligible.) This is known
as the total scattering cross section o, which has units of area. Thus o represents the
scattering strength of the sample, and can be viewed as an unnormalized probability that
an incident neutron will be scattered. If one compares the value of o for hydrogen with that
of aluminum, it will be clear that different elements can have enormously different scattering

strengths.



Question: The scattering cross section for x-rays is a severe and monotoni-
cally increasing function of atomic number Z. This is because x-rays scatter
from the electrons of an atom, which increases with increasing Z. Neutrons,
by contrast, scatter from the atomic nucleus via short-range nuclear forces. If
you plot ¢ for neutrons versus Z, do you see any trend? In what ways might
this be advantageous? (Values for o can be obtained from the NCNR Summer

School webpage under “Course Materials.”)

It is instructive to consider the relative sizes of o and d?c/dQdE;. Clearly o, which
represents the total number of neutrons scattered per second by the sample, is many orders
of magnitude larger than d?c/dQdE}, which is both an energy and directionally analyzed
quantity. On the other hand, the partial differential scattering cross section provides a
correspondingly greater amount of information because it contains all of the details of the
individual and collective motions of the atoms, molecules, and/or any atomic magnetic
moments that comprise the sample. The differential cross section do/dS2, which is what is
measured in a diffraction experiment, lies between o and d?0/dQdE; in size. As the elastic
component dominates in do/dS), it gives the time-averaged (equilibrium) positions of all of
the nuclei in the sample, and is used to determine the crystal structure.

The partial differential scattering cross section can be cast into a useful mathematical
form via the formalism outlined at the end of the neutron scattering primer written by Roger
Pynn[2] (which the summer student is presumed to have read). With a small deviation from
the notation used by Pynn we can write the partial differential cross section for a system

composed of a single atomic element as

d’c 1 [ ky = 3
deEf = E (I{;—Z> [awhSwh(Q,w) + UincsinC(Q7w)] ) (6)

where S (Q,w) is exactly same quantity as [ (Cj, €) used by Pynn to express Van Hove’s

) 7

“scattering law.” The subscripts “coh” and “inc” refer to the coherent and incoherent

parts of the scattering, and pertain to the collective or individual motions of the atoms,



respectively, as described on page 9 of Pynn’s primer. For the purposes of this experiment
on SPINS, we are only concerned with the collective dynamics of the magnetic moments
present in ZnCr,Oy4, and thus the coherent part of the partial differential scattering cross
section.

The scattering function Swh(@,w) contains a double sum over pairs of nuclei as shown
in Eq. 3 on page 28 of Pynn’s primer. Each term in this sum represents the “correlation”
between the position of one nucleus at a time ¢ = 0 with that of another nucleus at an
arbitrary time ¢ later. These correlations are important for systems in which the nuclei are
strongly coupled via some type of interaction, and less so when this coupling is weak. In
either case Scoh(Cj,w) provides a measure of the strength of this coupling, and hence the
resulting “collective” motions. It is therefore extremely useful, for example, in mapping out
the dispersion relations of lattice vibrations, that is how the energy w of the lattice vibrations
changes at different Cj positions, in solids. For the remainder of this discussion, we will drop
the subscript “coh” with the understanding that we are referring to the coherent part of the
scattering function.

The scattering function S’(Cj,w) can be simply related to the imaginary part of the

dynamical susceptibility according to

- h 1 ~
S(Qw)=— <m + 1) X"(Q,w), (7)

where kp = 1.381 x 1072% Joules/K is Boltzmann’s constant (note: h/kp = 11.60 K/meV is
a handy conversion factor). This is a very important equation since it shows that S (Q, w),
which is readily obtained from the experimentally measured partial differential scattering
cross section via Eq. 6, is also related to a quantity that is easily calculated by theorists,
X" (Q,w). Therefore a measurement of the partial differential scattering cross section via
neutron spectroscopy allows for a direct test of theoretical models. By recording the scat-
terered neutron intensity as a function of energy transfer iw and momentum transfer Cj, and
removing the instrumental effects, one obtains S (Q, w), which contains all of the dynamical

information about the system.



With the exception of the neutron spin-echo (NSE) technique, all other neutron spectro-
scopic methods measure d*c/dQdE; using a neutron detector to count the number of neu-
trons scattered per unit time from a sample as a function of the energy transfer AE = hw
and the momentum transfer Cj To do this requires that one know the energy and wavevector
of the neutron before (E;, k;) and after (Ey, k}) it scatters from the sample. There are many
ways of doing this, and most will be illustrated by the different experiments in this summer
school. As will be seen, each method has its own particular advantages and limitations,
depending on the range of energy transfers (time scales) and momentum transfers (length

scales) one wishes to study.

B. The Triple-Axis Spectrometer

The triple-axis spectrometer (TAS) is an extremely versatile instrument that is primarily
intended for the study of the collective motions of the atoms and their magnetic moments
in single crystal samples. The first TAS system was used to obtain the first experimental
demonstration of phonon and magnon dispersion curves (in aluminum and magnetite) in
the mid 1950’s. The instrument derives its name from the fact that the neutrons interact
with three crystals on their way from reactor to detector, each crystal being able to rotate
independently about a vertical axis passing through its center. This is shown schematically
in Fig. 2. The first crystal is called the monochromator, as it selects a single monochromatic
component from the white neutron beam emanating from the reactor. The second crystal is
the sample itself (although it may be either a single crystal or a powder). The third crystal
is called the analyzer, as it is used to analyze the energy spectrum of the neutron beam that
scatters from the sample. And the last primary element of the instrument is, of course, the
neutron detector.

In a triple-axis spectrometer, the initial and final neutron energies are determined by
exploiting the process of Bragg diffraction from the monochromator and analyzer single

crystals. This is done by rotating the crystals about their respective vertical axes such that



a specific set of atomic Bragg planes, having a well-defined interplanar spacing d, makes an
angle 0, known as the Bragg angle, with respect to the initial (or scattered) beam direction.
When this is done, only neutrons with wavelengths that satisfy the Bragg condition (see

pages 9-11 of Pynn’s primer)
nA = 2dsiné, (8)

where n is an integer greater than zero, will Bragg scatter from each crystal and proceed

successfully to the next element of the spectrometer.

Question: Because the variable n in Bragg’s law can be any integer greater
than zero, more than one monochromatic component can be present in the
neutron beam diffracted by either monochromator or analyzer. List the pos-

sible wavelengths of these other components. How might their presence affect

the experimental data?

To remove the extra and unwanted monochromatic components from a Bragg diffracted
beam, while preserving the neutron flux at the desired fundamental (n=1) wavelength A,
it is common practice to place a filter composed of some solid material in the path of the
beam. The choice of material depends on the primary wavelength A. For thermal neutrons,
a special form of graphite (pure carbon) known as highly-oriented pyrolytic graphite (HOPG
or just PG) is often used. Graphite has a layered structure in which the crystalline [001]
or c-axis is normal to the layers. HOPG behaves like a crystal of graphite in which the
various graphite layers have all been randomly spun about the c-axis. Therefore HOPG can
be viewed as a single-crystal along [001], and a powder along the two orthogonal directions.
It exhibits very good transmission at certain neutron energies including 13.7, 14.7, 30.5, and
41 meV. Neutrons of other energies are preferentially (though not completely) scattered out
of the beam, thereby minimizing the chance they will enter the detector and contribute to

the background.



For cold neutrons, such as those used on the SPINS spectrometer, a polycrystalline block
of beryllium (Be) is used as a wavelength filter. The requirement for this filter to work is
that there be enough tiny crystallites to span all angular orientations, i. e. all values of the

Bragg angle 0, so that all unwanted neutrons are Bragg scattered out of the neutron beam.

Question: Consider a white (polychromatic) beam incident on a polycrys-
talline Be filter. What happens to those neutrons with wavelengths A > 2d,,4,
where dpnee = 1.98 Ais the largest interplanar d spacing available in beryllium?
What happens to those neutrons with A < 2d,,,,?7 Make a simple sketch of

transmission versus energy for this filter.
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Fig. 2. Schematic scattering configuration for a conventional triple-axis spectrometer. It

measures a scattering event at a single value of (Q, fiw) at a time.

As can be seen from Fig. 2, when the incident neutron beam from the reactor strikes
the monochromator, it is scattered through an angle 26,, from its initial direction. This
is commonly referred to as the monochromator scattering angle. In order for the resulting
monochromatic beam to hit the sample, it is necessary to rotate the subsequent elements
(sample, analyzer, and detector) of the spectrometer about the monochromator axis through
an angle of 26,,. The same situation applies for the sample, and the analyzer, i. e. associated

with each crystal is a Bragg angle 6, and a scattering angle 2. Hence each axis of the triple-
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axis spectrometer is actually composed of two motors, one to control the crystal Bragg
angle 6, and the other to rotate the subsequent (downstream) elements of the instrument by
the appropriate scattering angle 26. While there are many different motors involved in the
operation of a triple-axis spectrometer, such as those that control mechanical slits that limit
the horizontal and vertical extent of the neutron beam, the primary instrument motors are
those that control the values of 6 and 26 for the monochromator, sample, and analyzer.
The material most commonly used as monochromator and analyzer in a TAS system
is also HOPG. Its utility lies in its very high reflectivity for neutrons over a wide range of
energy. The (002) Bragg planes of HOPG have an interplanar d spacing of 3.354 A. Other

materials that also find use in triple-axis spectroscopy are silicon, germanium, and copper.

Question: Calculate the monochromator Bragg and scattering angles re-
quired to obtain a neutron beam having initial energies E; = 14.7 meV, and
100 meV using the (002) reflection of HOPG. The (220) reflection of copper

has a d spacing of 1.278 A. Would this be a better choice of monochromator

in either case?

During the interaction with the sample, neutrons can lose or gain energy, and thus can
emerge with an energy F; # E;. The resulting energy transfer can be computed according

to

2
hw:Ei—Ef:h—< ! ! ) (9)

8m \ 2 sin>0,, d2sin®f,
where d,,, and d, are the d-spacings of the monochromating and analyzing crystals, respec-
tively. If the analyzer is set to select the same energy as that of the incident beam (E; = EY),
then hw = 0, and the scattering is said to be elastic. If not, one detects inelastic scattering
events. (A third category of scattering known as quasielastic scattering, is discussed in the
experiment on the Disc Chopper Spectrometer (DCS).)
Controlling the momentum transfer Q between neutron and sample is achieved by ori-

enting the incident and final neutron wavevectors with respect to each other to obtain the
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desired vector difference (/5; - k}) Unlike the case of the monochromator and analyzer crys-
tals, the Bragg and scattering angles for the sample needn’t be related by a simple factor of
2. Indeed, when measuring inelastic scattering they usually are not. Hence the notation 26
(which is quite common) can be misleading for the novice scatterer. With this warning in
mind, we can calculate the magnitude of the momentum transfer by computing the vector

dot product of Cj with itself, i. e.

Q- Q = (ki —kp) - (ki — k), (10)

from which we obtain

@ = \/k? + k3 — 2kik; cos 20. (11)

Note that the momentum transfer does not depend on the sample Bragg angle €, but only on
the sample scattering angle. The purpose of the Bragg angle is to allow the crystalline axes of
the sample (if it happens to be a single crystal) to be aligned in specific ways with respect to
the scattering vector Cj This allows one to probe the geometry of the dynamics in question
along different symmetry directions. The utility of the sample Bragg angle becomes moot,
however, in the case of a powder sample (composed of many tiny and randomly-oriented

single crystals).

Question: What is the maximum momentum transfer one can obtain in the
case of elastic scattering, i.c. |k;| = |l;f|? What is the minimum? Why might

these two configurations be problematic from an experimental point of view?

By stepping the analyzer Bragg angle ,, or the monochromator Bragg angle 6,,, by
computer in small angular increments, one can effectively scan the energy transfer hAw.
Generally this is done while keeping the momentum transfer Cj constant, and is known as a
constant—@ scan. The complement to the constant—@ scan is the constant-E scan in which

the energy transfer is held constant while one varies the momentum transfer. These two
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scans are fundamental to the triple-axis method, and are used commonly to map out the
dispersion relations for both phonons and magnons in condensed matter systems.

In the case of the constant—@ scan one has a choice of which Bragg angle to vary, and
which to hold fixed. As a rule, it is best not to vary both as one needs to place a wavelength
filter in the path of either the incident beam (before the sample) or the scattered beam (after
the sample) in order to remove the higher order harmonic content of the Bragg diffracted
neutron beam (remember the effect of the integer n in Bragg’s law). If the analyzer angle
0, is fixed and one varies 6,,, the result is an F-fixed configuration. Doing the opposite
results in an E;-fixed configuration. Both methods yield data that contain the same physics.
Deciding which to choose depends largely on the specific problem being studied.

Because of the small size of the partial differential scattering cross section, and the limited
flux available at neutron sources, neutron spectroscopic methods cannot make measurements
at arbitrarily precise values of fiw and Cj To boost the neutron signal at the detector, the
experimentalist is obliged to work with beams of neutrons having wavevectors that are not
exactly parallel, i. e. which have finite vertical and horizontal angular divergences. This
introduces a spread or uncertainty to the momentum transfers of the neutrons which are
centered about some average value Cjo. The beam divergences are controlled by introducing
sets of thin parallel blades called collimators into the beam whose length L and separation

v define the limiting divergence 7 of the neutrons according to
n=2tan '(v/L) ~ 2v/L. (12)

These blades are coated with a strongly neutron absorbing material such as Gd,O3 or Cd
such that neutrons with a divergence that exceeds 7 are absorbed and removed from the
beam. Typically collimators are inserted in each of the four different flight paths between
elements of the spectrometer, i.e. between reactor and monochromator, monochromator
and sample, etc. A choice of fine collimation improves the instrumental Q—resolution at the
expense of neutrons counted at the detector. A choice of coarse resolution degrades the

—

Q-resolution, but increases the neutron count rate. To optimize the experimental data then,
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it is best to match the Q—resolution of the instrument with the features of the scattering one
is try to measure.

Similarly, one can coarsen the instrumental hw-resolution by introducing small angular
misorientations of the Bragg planes into the monochromator and analyzer crystals. This can
be done by pressing the crystals under high pressure and temperature, such that the Bragg
planes are no longer exactly parallel to each other, but are instead narrowly distributed in
angle about some average. Such an angular distribution is often Gaussian in form, and is
usually characterized by the half-width at half maximum (HWHM), known as the crystal
mosaic. The result is that both monochromator and analyzer will diffract a narrow spread
of neutron energies that depends on the size of the mosaic, and significantly increases the
scattering intensity measured at the detector. Typical values for the mosaic spread range
from 30" (0.5°) to 40". The resulting energy transfers of the neutrons will be distributed
about an average value hwy.

In general, the instrumental (Cj, hw)-resolution is a complicated function of k_;-, k}, colli-
mator divergences, and the monochromator and analyzer mosaic spreads. For a given spec-
trometer configuration, the instrumental resolution can be expressed as a four-dimensional
function of hw and Cj as R(Cj— Q}, w—uwy), and is always calculated by computer. While one
can often extract meaningful results from TAS measurements without needing to take the
effects of the finite instrumental resolution into account, all data must be corrected for these
effects before they can be compared to theoretical calculations of the scattering function
S(Q,w). Fortunately, the intensity at the detector is well-described by a convolution of the

resolution function with the scattering function, i. e.

—

Id(go,wo) = /R(Q — Qo,w — WO)S(@,W)deW- (13)

While a detailed discussion of R is beyond the scope of this handout, all users of triple-axis
spectrometers will need to know how to optimize the instrumental resolution to match the

time scales and length scales of the problem they wish to study.
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C. The NCNR Spin Polarized Inelastic Neutron Scattering (SPINS) Spectrometer

The advantage of the triple-axis method is its ability to measure the scattering function
S(Q,w) at a single value of (@, Aw) at a time with a high signal-to-background ratio. By
the same token, the disadvantage of the triple-axis method is that it can only measure the
scattering function S(Q,w) at a single value of (@, Aw) at a time so a full set of measure-
ment require extended periods of time. To address this problem, the design of the SPINS
instrument incorporates two novel elements to increase its data acquisition rate far beyond

that available on a conventional TAS. Both are shown schematically in Fig. 3.

Sampke
Position—Sensitie
Monochromato Detector A
3 _J
A o
I L »
Multi—Crystd
Analyzer

Fig. 3. Schematic scattering configuration of a multiplexing detection system utilizing a
Position-Sensitive-Dector (PSD) for a triple-axis spectrometer. It simultaneously measures

scattering events at different values of (Q, hw) at a time.

First, the lone pencil-shaped neutron detector has been replaced by a two dimensional
position sensitive detector (PSD), which covers a much larger angular range of scattering
from the sample. Second, the single crystal analyzer concept present in conventional TAS
systems has been replaced by a multiple single-crystal analyzer. The SPINS analyzer is
composed of 11 narrow blades, each 15 cm tall by 2 cm wide, that are free to rotate about

their own vertical axes, whereas the entire analyzer assembly is able to rotate about a central
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vertical axis. The combination of the PSD and the multi-crystal analyzer enables SPINS to
measure S (Cj, w) over a range different energy and momentum transfers simultaneously.
When the multiple-crystal analyzer is set to be flat, each blade of the analyzer will
diffract neutrons of a different energy E; to a different location on the PSD. This is so
because each blade makes a slightly different angle 6; with respect to the beam scattered
from the sample. For a given incident neutron energy F; and sample scattering angle 26,
the resulting set of wavevector and energy transfers constitutes a curve in (Q, fiw)-space,
and is illustrated in the right-hand side of Fig. 3 (compare this to Fig 2). By changing the
incident energy and the scattering angle, we can sweep this curve through (Q, iw)-space,
thereby surveying the partial differential scattering cross section far more rapidly than a
conventional TAS system ever could. A significant advantage of this mode of operation is
that the instrumental energy and wavevector resolution, as well as the signal-to-noise ratio,
remain as good as they were for the conventional triple-axis spectrometer configuration with
the same horizontal collimations. The data acquisition rate, however, is increased by about

an order of magnitude.
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II. FRUSTRATED ANTIFERROMAGNETISM IN ZNCR;04

The system we have chosen to demonstrate the utility of the triple-axis technique is
ZnCry04.[3] This compound is an interesting system because it undergoes a well-defined
magnetic phase transition from a paramagnetic state to an antiferromagnetic (AFM) state
at T=12.5 K, and, as we will see, the dynamics of the magnetism in these two phases are

strikingly different.

oo
) - &/ \&
- /\S

Frustratel

(@

Fig. 4. (a) Sites of Cr?* ions in ZnCry04 form a network of corner-sharing tetrahedra.

(b) Antiferromagnetic Ising triangles.

The Cr*" ions in ZnCryO,4 possess an electronic spin S = 3/2, and carry a net mag-
netic moment of 1.5 Bohr magnetons (1.5 ug). These ions form a network of corner-sharing
tetrahedra, as shown in Fig. 4 (a). If the magnetic moments in such a network interact
antiferromagnetically with their nearest neighbors through the Heisenberg exchange Hamil-

tonian, H, with a coupling constant .J
H=-JY 8,5, (14)

which the Cr3* moments in ZnCry,Oy4 do, then the exchange interactions will favor an an-

tiparallel alignment of all neighboring moments. However, this condition cannot be satisfied
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simultaneously for all neighboring moments because the intrinsic symmetry of the lattice
does not allow it.[4] This is an example of geometrical frustration. The simplest case of this is
a triangle of antiferromagnetically-interacting Ising spins (which can only point up or down)
shown in Fig. 4 (b). (Note: the word “spin” is used fairly interchangeably with the term
“magnetic moment.”) Here when two spins are aligned antiparallel to each other, as are the
top and left hand spins (symbolized by the arrows), then the third spin (on the right hand)
cannot satisfy its antiferromagnetic interactions with the other two spins simultaneously.
When an ordinary magnetic system is cooled sufficiently, it reaches a point where the
thermal energy (which is of order kgT') is less than the intrinsic local magnetic exchange
energy (which is proportional to the exchange constant .J, the size of the magnetic mo-
ment and the number of neighboring spins). When this happens, the disordering effects of
temperature succumb to the ordering effects of the magnetic interactions, resulting in what
is called magnetic order. The spatial extent of the magnetic order, short or long range,
depends on the dimensionality and geometry of the interactions, and on whether the spins

are quantum or classical. Three dimensional spin systems usually exhibit long range order

JzS(S+1)

where z is the
3kp

when T' < |O¢cw/|. Here the “Curie-Weiss” temperature, Ocy =
number of neighboring spins and kp is the Boltzman constant. Details about the geometry
and periodicity of the magnetic order will depend on the type and strength of the magnetic
interactions between the moments, and are precisely the information that neutron elastic
scattering provides.

When the magnetic lattice is geometrically frustrated, the effects of frustration can sup-
press the ordering transition temperature and lead to complex low-temperature phases that
are qualitatively different from those present in conventional magnetic systems. To assist the
experimentalist in framing the relevant questions to ask when studying such novel systems,
and thus to help choose the right neutron scattering experiments to determine the answers,

it is imperative that alternative sources of data, e. g. derived from literature searches, be

obtained whenever available. This is discussed in the following section.

18



A. Initial Experimental Planning
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Fig. 5. Bulk susceptibility data from ZnCryOy.

When planning neutron scattering experiments on a sample, measurements of bulk prop-
erties such as the magnetic susceptibility, heat capacity and resistivity, can serve as an in-
valuable guide. All NCNR facility users should avail themselves of any existing data, be
it their own, or published elsewhere, that could help them make more efficient use of their
beam time which costs NIST an average of $4,000 per day per instrument to provide. Fig. 5
shows bulk magnetic susceptibility data taken on a powder sample of ZnCry,O4 in which a
sudden drop in y takes place at the transition temperature Ty = 12.5 K, suggesting the
occurence of a magnetic phase transition in which the low-temperature phase exhibits an
antiferromagnetic-like ordering (thereby resulting in a smaller total moment). These data
show that the relevant temperature scale is 12.5 K, and that a reduction of the magnetism

has occurred for reasons unknown. The relevant questions then become:
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Question:
(1) How does ZnCr,O,4 order magnetically below 12.5 K?
(2) How do the correlations between spins change through the apparent phase

transition at 12.5 K?

As you will see from the data you obtain, neutron scattering is an irreplaceable tool for

studying the geometry and energetics of the correlations between spins in magnetic systems.

B. Experimental Set-Up

A 25 gram powder sample of ZnCryO4 has been sealed inside an aluminum container.
Aluminum is among the most commonly used materials for sample containers because it
is relatively transparent to neutrons. We are using a powder sample in this experiment
because single crystals of ZnCr,0O,, sufficient in size for neutron inelastic measurements,
are not currently available. The aluminum container has been mounted inside a liquid-
helium-filled cryostat which has been cooled down to 1.5 K, and placed on top of the SPINS
goniometer (or sample) table.

The incident neutron energy on SPINS can be varied from 2.4 < E; < 14 meV. A 6-
inch, liquid-nitrogen cooled, polycrystalline BeO filter, which transmits only neutrons having
energies below the Bragg cutoff energy of 3.7 meV, Bragg scatters all other neutrons out
of the transmitted beam. It has been placed after the sample to eliminate higher-order
(n > 1) monochromatic components passed by the monochromator. The energy of the
center analyzer blade has been set to 3.15 meV, and the energy range that the detection

system (analyzer+PSD) detects set to 2.6 < Ey < 3.7 meV.

‘ Question: Why is the SPINS BeO filter cooled?
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C. The Spin-Spin Correlation Function < Sg(t) - S, (0) >

The intensity of neutrons scattered from the magnetic moments in a solid is proportional

to the spin-spin correlation function[1]

d*c 2k g A
- —|=F 2 5(1 — Wa
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— [ dt &' S%(t)S%, (0) > e i@ (H-F) 15
- [dte ¥ 2 < SiBSH0) > (15)
where g = —0.54 - 1072 ¢m, g is the gyromagnetic ratio, F(Q) is the magnetic form-factor

and N is the number of unit cells in the solid.

Neutron Scatterim

Cross Section Correlation Functio
25 Fourier Transfom
- > <Sp(t) - Sp/(0)>
4QdE, SR(t) - SR(0)

A
Ordered momen

A
S(Q,Q)) /_\ Fluctuating mom;\
0
t
A

y

g

/ Long-range orde A
P\

S(Q,(JL)) <‘/ Short-range orde —\
K —»
SN A=

Q R-F
I" : Relaxation rate T : Lifetime
K : Intrinsic linewidh & . Correlation lendt

Fig. 6. The relationship between the neutron scattering cross section and the spin-spin
correlation function. The relaxation rate I' is HWHM in energy of S(Q,w), and is inversely
proportional to the lifetime of the excitation 7. The linewidth « is the HWHM in momentum

transfer of S(Q,w), and is inversely proportional to the correlation length £.
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While this equation appears formidable, the following figure can help shed substantial
light on the relationship between the measured magnetic neutron scattering cross section
d?c/dQdE; and the time-dependent spin-spin correlation function < Sg(t) - Sy (0) >. Basi-
cally the partial differential scattering cross section d*c/dQdEy is the Fourier transform in
space and time of the spin-spin correlation function. Thus, neutron elastic scattering probes
static ordered moments, whereas neutron inelastic scattering probes fluctuating (dynamic)
moments. The spatial dependence of the spin correlations can be determined from the Q-
dependence of S(Q,w). For example, if S(Q,w) is Q-resolution limited, then this would
indicate that the spatial correlations are of long-range. However, if S(Q, w) is broader than
the instrumental @)-resolution, then the correlations are short-ranged.

Although mapping out the scattering cross section in (Q,hw)-space is necessary, two
quick scans would be a good start for this investigation: (1) Elastic measurements scanning
@ both above and below Ty, for example at 1.5K and 15K. These data could be used to
see if the spins in the system order below Ty, and if so, what kind of order takes place. (2)
Inelastic measurements at a fixed @, for example at 1.5 A~!, as a function of fiw at the same

two temperatures to see how the energy spectrum changes.
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III. DATA AND ANALYSIS

Fig. 7 shows the data that we should obtain. The elastic scattering intensity S(Q, fiw = 0)
at 15 K exhibits a peak at 1.31 A~! which corresponds to the nuclear (111) Bragg reflection.
At 1.7 K, additional sharp peaks appear which are due to the ordering of the Cr3* magnetic
moments. The nuclear (111) Bragg peak is necessarily @)-resolution limited because ZnCry,Oy

is a crystal with long-range nuclear order.

Mf

[(Q=1.54"hw) (arb. units)

Fig. 7. (a), (b) Neutron elastic scattering data taken at 15 K and 1.7 K. (c), (d) Neutron

inelastic scattering data taken at Q=1.5 A=! at 15 K and 1.7 K.

Question:

(1) Estimate the instrumental Q-resolution.

(2) Are the static spin correlations below T long ranged or short ranged ?

From the relative intensities of the magnetic Bragg reflections, we can determine the
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spin structure of the ordered state. However the details of such an analysis are beyond this
session. In fact, the true spin structure has yet to be solved.

Now we turn our attention to the magnetic excitations shown in Fig. 7 (c) and (d). At
15 K, there is strong scattering at low energies. We can roughly estimate the relaxation rate
', which is the Half-Width-at-Half-Maximum (HWHM) of S(w): I' ~ 1.3 meV. This means
that the dynamic correlations at this temperature have a lifetime of about h/T ~ 0.5-10~2
s. At 1.5 K, in the ordered state, the energy spectrum becomes drastically different. Most
of spectral weight at low energies at 7" > T has moved into a prominent peak at hw = 4.5
meV. This peak is unusually sharp for an ordinary ordered state and is usually due to a

transition between two energy levels.
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Fig. 8. Q-dependence of the inelastic scattering cross section measured using different

energy ranges at different temperatures.

The spatial dependence of the spin-spin correlation function will shed light on what is

responsible for the local resonance at 4.5 meV below Ty, and the low-energy excitations
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above Ty. In order to obtain such information, the following two measurements are useful:
(1) At 15 K, scan Q with fiw = 1 meV and (2) at 1.7 K, Q-scan with iw = 4.5 meV. The

results that you should get are shown in Fig. 8.

Question: Are the dynamic spin correlations long-ranged or short-ranged

above and below Ty 7 Estimate the correlation length, &, for the dynamic

spin correlations.

Your estimate for & should suggest that the fluctuations involve small antiferromagnetic
clusters. The broad peak at 1.7 K also indicates that there is a local spin resonance in the
magnetically long-range ordered phase. The coexistence of long-range order and the local
resonance is very unusual. This indicates the presence of weakly interacting spin clusters
within the ordered phase, which is a key feature of geometrically frustrated magnets. To
identify definitely the origin of the local spin excitations would require neutron scattering

measurements on single crystals of the material.
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IV. CONCLUSIONS

We have found that ZnCryO4 undergoes a phase transition from a paramagnetic phase
to a long-range, antiferromagnetically-ordered phase with an unusual local spin resonance
at hw = 4.5 meV. What is the mechanism of this phase transition? One possible scenario
is that there are two competing phases in this material: one a cooperative paramagnetic
phase with short-range order, and the other a phase with long-range order and a local
spin resonance. Above Ty = 12.5 K, the cooperative paramagnetic state with its high
ground state degeneracy is favored due to its higher entropy. But at lower temperatures,
a small crystalline distortion induces the long-range AFM order which has a lower ground
state energy than the disordered paramagnetic state does. This lower ground state energy
outweighs the entropy term in the free energy at low temperatures and favors the ordered
phase. Another important feature is that both the paramagnetic (7" > Ty) and ordered (T <
Ty) states have the same short-range dynamic spin correlations. This suggests that in this
frustrated magnet fluctuating spins form composite spin clusters which are the fundamental
degrees of freedom. Recent inelastic neutron scattering measurements on single crystals of

ZnCry0y4 have identified antiferromagnetic hexagonal loops as the composite spin entities.[5]
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