Magnetic Frustration at Triple-Axis

S.-H. Lee, S. Park, P.M. Gehring NCNR

□ Magnetism, Neutron Scattering, Geometrical Frustration

\Box ZnCr₂O₄: The Most Frustrated Magnet

How are the fluctuating spins in the Spin Liquid phase correlated with each other? How does nature respond to the ground state degeneracy?

Summary

ZnCr₂O₄

Space group Fd3m

Lattice of B sites

: Corner-sharing tetrahedra

 $\mathbf{H} = -\mathbf{J} \sum_{nn} \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}}$

Magnetic Neutron Scattering

Neutron:

- > Wavelength comparable with interatomic spacings
- > Penetrating \rightarrow bulk properties are measured
- → has spin $s = \frac{1}{2}$ so interacts with atomic moments

Scattering by atomic magnetic moments: $I = (0.54)^2 S (S+1)$

Magnetic scattering intensities can be comparable to nuclear scattering !!

Neutron Scattering

measures scattering cross section as a function of \boldsymbol{Q} and $\boldsymbol{\omega}$

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}\omega}(\mathbf{Q},\omega)$$

Phase Diagram for an Ordinary Magnet

$$F = H_{mag} - TS = -\Sigma J S_i S_j - TS$$

Ground State : Long range (anti)ferromagnetically ordered state. Low Energy Excitations : linear spin waves around the ordered state.

Neel phase: What kind of magnetic scattering signal in Q and ω space would you expect? (1) Any Elastic signal? (2) Any Inelastic signal? If any, what kind of shape in the ω- and Q-space?

Geometrical Frustration

A tetrahedron with four isotropic spins

Zero energy modes in the ground state manifold

Geometrical frustration leads to a large degeneracy in the ground state

Why $ZnCr_2O_4$?

Space group Fd3m

What is the nature of the low temperature phase?

Theory of spins with AFM interactions on corner-sharing tetrahedra

$$\mathbf{H} = -\mathbf{J} \Sigma \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}}$$

SPIN TYPE	SPIN	LOW T	METHOD	REFERENCE
	Value	PHASE		
Isotropic	S=1/2	Spin Liquid	Exact Diag.	Canals and Lacroix
				PRL '98
Isotropic	S=00	Spin Liquid	MC sim.	Reimers PRB '92
				Moessner, Chalker
				PRL '98

Issues

Nature of the Spin Liquid State

How are the fluctuating spins in the SL phase correlated with each other?

Novel Phase Transition?

How does nature respond to the ground state degeneracy?

You will be able to answer the questions after the demonstration session at SPINS!

A Phase Transition in ZnCr₂O₄

What is the nature of the phase transition?

Neutron Scattering from ZnCr₂O₄

SHL et al., PRL 84, 3718 (2000)

Keep in mind !!!

Neutron scattering is the most powerful technique to study magnetism!!

