Triple-Axis Spectroscopy

Seung-Hun Lee

Outline

- Basic principles of TAS
- Multiplexing detection modes for TAS
 - 1. Horizontally focusing mode
 - 2. Position-sensitive-detector (PSD) mode
- Examples of science utilizing the PSD mode

Mn₁₂: Magnetic Molecule

Neutron Scattering

measures scattering cross section as a function of \boldsymbol{Q} and $\boldsymbol{\omega}$

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}\omega}(\mathbf{Q},\omega)$$

How can we determine Q and ω ?

Scattering triangle : Energy and momentum are conserved in the scattering process

Now, how to determine k_i , k_f , and 2θ ?

- Triple-axis spectroscopy (TAS)
- Time-of-flight spectroscopy (TOF)

Conventional Triple-Axis Spectroscopy (TAS)

TAS is ideally suited for probing small regions of phase space Shortcoming: Low data collection rate Improvement

Multicrystal analyzer and position-sensitive detector

Horizontally Focusing (HF) Analyzer Mode

L = distance from sample to HF analyzer w_a = total width of HF analyzer

 $\Delta 2\theta = w_a \sin \theta_a / L \sim 9$ degree for E_f=5 meV at SPINS

Useful for studying systems with short-range correlations

Multiplexing Detection System for TAS

Probes scattering events at different energy and momentum transfers simultaneously Survey ($h\omega$ -Q) space by changing the incident energy and scattering angle

Mn₁₂: Magnetic Molecule

Energy levels :
$$H = -D S_z^2$$

Mn³⁺ (S=2)
Mn⁴⁺ (S=3/2)

$$S_{tot} = 10$$

Mn_{12} Magnetic Molecule : I (T,w) at Q = 1 A⁻¹

The peaks correspond to transitions between different energy states

Crystal Structure of Spinel ZnCr₂O₄

Space group Fd3m B site: the center of O octahedron with a slight trigonal distortion

B sites form a network of corner-sharing tetrahedra -> Frustrating lattice for antiferromagnetic spins

Geometrical Frustration

A simplest example: a Triangle of three antiferromagnetic Ising spins

 $H = -J \Sigma S_i \cdot S_j$ AFM ? AFM ? E = -|J|

Geometrical frustration leads to a large degeneracy in the ground state

Effect of Geometrical Frustration

Frustration suppresses the magnetic ordering

A new state of matter ?

Initial Experimental Planning : Bulk susceptibility from ZnCr₂O₄

How do the spin correlations change through the phase transition?

Neutron Scattering from ZnCr₂O₄

Keywords for SPINS Hand-on Experiments

- Triple-axis spectroscopy Multiplexing detection system for a TAS
- Spin correlations
- Magnetic phase transition
- Long range vs Short range order
- Static spin correlations
- Dynamic spin correlations

Elastic neutron scattering Inelastic neutron scattering