Health Physics

Occupational Health and Safety Radiation Protection and Training

What is Health Physics?

- Radiation Health and Safety
- A support group for you!
- Phone (301) 975 5810
- Room A-132

After hours HP support page control or dial 6292

How Can We Help You?

Our Philosophy: You are here to do good research. We are here to help you be safe (and stay within the regulations.)

- We train you to understand the risks and work safely around the beams
- We monitor the radiation conditions
- We assist with facility and experiment design
- We assist with radioactive sample shipping
- We document regulatory compliance

Basic Radiation Science

(in less than five minutes)

- What is ionizing radiation?
- How does it interact with us?
- What is the risk? What are my risks?
- How do I protect myself?

Ionizing Radiation

Any electromagnetic wave or particle radiation capable of producing ions (knocking electrons out of orbit) either by direct hits or indirect (magnetic) effects while passing through a material

Radiation Effects on Materials Breaking the Ties That Bind

Molecular bonds break since the "shared" electrons are missing

This free radical chemical effect dominates biological response.

The Linear No Threshold Model

Currently accepted regulatory risk estimates assume a "Linear No Threshold Response"

by extrapolating the High Dose and High Dose Rate data to Zero

What are My Risks?

- I can't say for sure because it is too low for statistics
- Assuming LNT 10 mrem = a one in a million risk added to the 20 % base line
- Mother Nature gives 300 to 500 mrem/year
- Most researchers get less than 50 mrem/year.
- Your dose will be lower

Protection Strategies For Radiation Workers

Time: Less time being exposed means less Dose and proportionately less Risk Dose = Dose Rate X Time

Distance: The intensity drops by the square of the distance $D_2 = D_1 (r_1/r_2)^2$

Shielding: The intensity drops by an exponential of the shield thickness $D = D_0 \exp(-ux)$

RULES

- Stay out of the Neutron Beam!
- Read the Signs! Survey and Know the Dose rate.
- Samples may activate... Survey before handling!
- Stay with your escort!
- As Low As Reasonably Achievable

Don't take a risk if you don't need to.

Safety Alarm Response

- Fire or Medical Emergency dial x2222
- Weather Alert: Go to Basement
- Evacuation Alarm: Leave by nearest exit. Gather at main front door. Wait for further instructions.
- Area Radiation: Leave immediate area. Contact Reactor Operations and HP for Support.
- Always Stay with your escort.

Your First Steps to Access (When You come back)

Four steps must be followed before a first time user can perform experiments (and obtain unescorted access) at the NIST Center for Neutron Research

1. Health Physics Radiation Safety Training: includes a computer-guided course, a 30-minute tour, and issuing dosimeters. (The computer part can be downloaded by clicking on Health Physics Radiation Safety Training at http://www.ncnr.nist.gov/access.html)

2.Please bring a letter of identification from your home institution often referred to as the "trustworthy" letter.

(This letter should be signed by a supervisor or colleague who can attest to your trustworthiness.)

3.Complete a "Facility User Safety Awareness Checklist"

4.Complete a Signed Facility User Agreement

Ask if you have questions!

Call HP at 5810 if you need help!

Learn a lot!

Have some Fun!