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Introduction
• Deterministic method is fast but lack of flexibility and inaccurate
• Monte-Carlo (MC) method is universal and more physical reliable 

but time consuming
• Hybrid deterministic-MC methods have being recently getting 

more and more interest to researchers.
• Deterministic models solution (both forward and adjoint) is 

employed to bias source particles and assign appropriate 
importance map to MC models to accelerate MC simulation and 
reduce the variance.

• Some current developed hybrid approaches:
– Variational variance reduction (Densmore & Larsen 2003)
– Correction method (Becker et al. 2007)
– FW-CADIS (Wagner et al. 2007)
– Talley linear combination (Solomon et al. 2009)
– Coarse mesh finite difference (Lee et al. 2009)
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Challenges
• Multiple responses application

– Importance for different responses are 
expected to be different

– Adjoint calculation needs to perform 
individually for each response

– Computational overheads become 
unacceptable with the increase of responses.

• Global and uniform variance reduction in the 
whole phase space
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FW-CADIS Approach

• Adjoint deterministic model:
• Adjoint solutions are employed to bias particle 

source distribution and weight window map
• Pseudo response - combine multiple responses 

with linear combination and the weight for each 
response is assigned as the reverse of the forward 
solutions
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Motivations of GP Approach
• Importance for different responses are expected to be 

correlated albeit they are different.
• Resulting responses uncertainties are expected to be 

correlated
– Given m responses, let r denote number of independent 

correlations. 
– Bias MC particles towards r (rather than m) independent 

correlations
• Gaussian Process (GP) approach is developed on these 

ideas
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Correlations?
• Given m random variables:
• Correlations are described by: 
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Gaussian Process (GP) Approach

• Radiation transport may be treated as a Gaussian 
Process1

• If responses correlations (covariance matrix) can be 
constructed and effective rank r can be estimated, 
one can reduce it to identify r uncorrelated pseudo 
responses

• r pseudo responses are formed in GP approach

1M. KENNEDY and A. O’HAGAN, “Bayesian calibration of computer model,” Journal of the Royal 
Statistical Society, 63, 3, 425–464 (2001).
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GP Approach - Estimating 
Responses Covariance Matrix

Let                                      represent a vector of the m 
responses of interest representing m random Gaussian 
processes. Denote                                   as N realizations of 
these random processes. The covariance between the two 
responses     and     is given by:
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The covariance information between all pairs of m responses 
may also be represented by a symmetric covariance matrix 

such that:                  . The SVD form of this matrix is:
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Numerical Applications
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Case Study 1: BWR Assembly Model

• Code: MAVRIC 
sequences in SCALE 
package

• BWR Assembly, 7x7 
array of fuel pins with 
various enrichments

• Fixed source 
subcritical system

• Total 27 neutron and 
19 photon energy 
group library are 
applied
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Case Study 2: PWR Core Model
• X-Y view of the core 

loading pattern with 
details assembly 
described on the side

• Total 193 fuel 
assemblies (blue 
region) laid out a 
17x17 grid scheme 
and surrounded by 
light water (red 
region)

• Two types of fuel 
assemblies are 
designed:  UO2 fuel 
assembly and a UO2- 
Gd2O3 fuel assembly. 
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Estimate of the Effective Rank for 
Covariance Matrix
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Relative Uncertainty Comparison for Thermal Flux 
(GP vs. FW-CADIS, Assembly Model)
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Global Uniformity of Variance 
(GP vs. FW-CADIS, Assembly Model)
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Relative Uncertainty Comparison for Thermal Flux 
(GP vs. FW-CADIS, Core Model)
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Conclusions

• Number of independent correlations are much smaller than number 
of responses, when responses are required everywhere in phase 
space

• GP assumption provides one way to take advantage of responses 
uncertainties correlations and the deterministic models can be 
employed to identify correlations

• Simple numerical experiments show that GP approach 
successfully gain better convergence in MC simulation comparing 
to FW-CADIS approach

• This idea could be extended to other hybrid deterministic-MC 
techniques

• A hybrid between GP and FW-CADIS methodology is suggested to 
reach their combined benefits in the future
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