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Problem Statement

We define the “inverse 
problem” as the inference of 
material properties inside an 
object under investigated.

The purpose of our project is 
to find out the material 
distribution inside an object 
based upon detection and 
analysis of radiation 
emerging from the object.

?

Beam window

Investigated 
object

Radiation 
detectors
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Scattering Blur Issue

Fig 1. Neutron radiograph of 
two cadmium strips 
displaying good image 
resolution for highly 
absorbing, low scattering 
materials.

(a)                     (b)

Fig 2. Image on the left (a) is a 
neutron radiograph of a thick carbon 
fiber composite object with 1/8 inch 
hole present. Image on the right (b) 
shows the object and the hole.

(Pictures are from W.S. Charlton’s DOE NEER proposal.)
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Beam-Object-Detector System

A schematic diagram of the beam-object-detector 
system
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Minimization Based Approaches

•
 

Objective function

•
 

Here ‘P’ is treated as a function of properties of the unknown object
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Former Work

Continued with V. Scipolo’s Master Work. His work could be
summarized as the following three parts:

1. Computational simulation. (MCNP)
2. X-Y 2D neutron transport forward model development.
3. Gradient calculation with Adjoint method.
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Drawbacks Associated with Minimization Methods 

•
 

Deterministic search method 
could be trapped into local 
minima

•
 

Stochastic search method is not 
stable and is time consuming

•
 

Cross-section sets obtained  are 
not constrained to be realistic

•
 

Dimension of unknowns grows 
fast as the case becomes more 
realistic

Notes: Number of possible variables (only thinking of scattering cross sections) 
in continuous searching scheme:

3  methodnumber of cells 100 groups

  16      100 100      4   640000
P

× × × =
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Advances Introduced

•
 

Treat unknowns as materials 
instead of cross sections
This is an important improvement!

•
 

Both Continuous and Stochastic 
optimization method involved.

•
 

Hierarchical Approach
Adaptive Mesh Refinement (AMR)

•
 

Advanced tabu-search techniques
•

 
Intelligent Sampling (LHS)
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Combinatorial Optimization Problem

•
 

Suppose we divide an object into 
have a 4x4 cells in a 2-D view and 
we have 10 material candidates in 
our material library.

•
 

In each cell, the material in it has 
10 possibilities, so over all 
there’re totally                                     
possibilities (solutions)  to 
construct the object.

•
 

Call one solution as one 
combination, it has a limited but 
discrete space.

16

16 times

10 10 10 10× × × =
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Procedures Proposed

•
 

Step I: 
Gradient-based linear search for cross sections, using crude 
forward model (e.g. coarse-mesh one-group diffusion). 

•
 

unknowns are cross sections; use hierarchy of spatial grids; must address 
local-minimum problem

•
 

Step II:
Use results from Step 1 to restrict material search space for 
following step. 

•
 

For each region, eliminate materials that are inconsistent with findings from 
Step 1.  Must address collapse-spectrum issue.

•
 

Step III:
Stochastic-based optimization with realistic transport forward 
model, fine meshes and multi-group.

•
 

unknowns are materials; fewer possibilities because of step 2; use 
advanced sampling techniques to generate iterates
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Present Status

•
 

Some completed work
•

 
Some work in progress

•
 

Difficulties and problems
•

 
Possible solutions
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MCNP Simulation

Fig 2. X-Y view of the object 
that produced Fig. 1.

normalized surface flux (back side)

0.E+00
1.E-02
2.E-02
3.E-02
4.E-02
5.E-02
6.E-02
7.E-02
8.E-02
9.E-02

0 2 4 6 8 10 12 14 16 18 20

mcnp program

Fig 1. Comparison of MCNP 
“experiment” vs. SN forward model.

These figures show that our SN transport model can reproduce MCNP 
results for a simple problem (Maxwellian incident energy distribution in 
MCNP; one energy group S8 in model).
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Gradient Verification

In a 2-cell problem, we use finite difference (FD) method to check the 
accuracy of derivatives calculated by adjoint method, there’s two 
derivatives actually calculated in each cell:
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Mat. Pro. Cell #1 Cell  # 2

(1/cm) 0.01 10

(1/cm) 0.5 1.2

(1/cm) 0.51 11.2

Table 1. Material 
properties in each cell.

sσ∂
Φ∂

aσ∂
Φ∂

Cell #1 Cell #2

Adjoint FD Adjont FD

2.1334311E-5 2.1334328E-5 1.2433677E-5 1.2433749E-5

-6.2106049E-5 -6.2107084E-5 -6.2834296E-5 -6.2835641E-5

Table 2. Comparison of the derivatives 
calculation results by adjoint and FD method.
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One-group Cross Sections

Using MCNP to generate energy collapsed cross sections for different 
materials. These information will be used to make a material candidate 
library for discrete optimization.

material sigma_t(1/cm) sigma_s(1/cm) sigma_a(1/cm)

paraffin 0.566949637 0.566575454 0.000374060 

B-10 554.068773212 0.319697120 553.749645166 

water 0.743519835 0.736203099 0.007317882 

Si 0.110164975 0.102154305 0.008010556 

Fe 1.178827056 0.967152960 0.211677974 

Nitrogen 0.000654006 0.000554943 0.000099062 

Uranium 0.812264369 0.453973014 0.160693259 

Cadmium(Cd) 0.300568600 0.247206364 0.053361707 

Aluminum(Al) 0.096671505 0.083069958 0.013601340 
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Conjugate Gradient Iteration

•
 

First invented to solve linear equations problem, and later 
introduced to non-constrained optimization problem.

•
 

Unlike the steepest descent (SD) method , in each iteration step 
conjugate gradient (CG) method moves along a so-called 
conjugate direction instead of moving along a direction only 
orthogonal the previous direction.

•
 

A more understandable point of view, the CG method tries to 
minimize the residual rather than the objective function itself.

•
 

In order to do that, the new search direction in every iteration 
step is produced by a linear interpolation between the old 
direction and the new gradient direction. 

1 1k k k kd r dβ+ += +
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Line Search

•
 

Once the search direction is set, you have to know how far to 
move along this direction to make the objective function 
minimum. This is the basic conception of line search (1D search). 

•
 

The importance of line search is that the accuracy of its result is 
usually vital to the efficiency of the whole CG method.

•
 

If the objective function could be written as a quadratic function 
to the unknown variables, it would be easy to find the minimum. 
Unfortunately our objective doesn’t have such a good quality.

1k k k kx x dα+ = +

1 1( ) ( , ) ( , )
2 2

T Tf x x Ax b c Ax x b x c= − + = − +
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Line Search (cont.)

A variant of line search methods was applied and tested here, 
either utilizing trial method such as the golden section search or 
using only function evaluations such as the quadratic fit method. 

0x mx d

0mx x dα= +

( )xΦ
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Difficulties in Line Search

•
 

Computationally expensive
lots of forward model 
calculation required.

•
 

Cross sections must be 
positive!
unconstrained optimization 
constrained optimization

•
 

Easy to get stuck!

Fig. Surface plot of objective in one 
cell problems (only two variables).
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Some ways to overcome the difficulties

•
 

Fix some cells properties

•
 

Smooth inversion (Regularized optimization) 
Add more constraints to objective function
e.g. Objective = misfit + roughness 

d
1d

2d

3d

1 'd
'd
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Stochastic Methods

•
 

Approaches to combinatorial optimization

•
 

Avoid local minimum

•
 

Investigate two methods
1. Simulated annealing (SA) method
2. Tabu search (TS) method

•
 

Investigate intelligent sampling techniques
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End

Thank you & Questions?


	Advances in Inverse Transport Methods and Applications to Tomography
	Outline
	Project Overview
	Problem Statement
	Scattering Blur Issue
	Beam-Object-Detector System
	Minimization Based Approaches
	Former Work
	Drawbacks Associated with Minimization Methods 
	Advances Introduced
	Combinatorial Optimization Problem
	Procedures Proposed
	Present Status
	MCNP Simulation
	Gradient Verification
	One-group Cross Sections
	Conjugate Gradient Iteration
	Line Search
	Line Search (cont.)
	Difficulties in Line Search
	Some ways to overcome the difficulties
	Stochastic Methods
	End

