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A new variant of a hybrid Monte Carlo–deterministic
approach for simulating particle transport problems is
presented and compared to the SCALE FW-CADIS ap-
proach. The new approach, denoted as the SUBSPACE
approach, improves the selection of the importance maps
in order to reduce the computational overhead required
to achieve global variance reduction—that is, the uni-
form reduction of variance everywhere in the phase-
space. The intended applications are reactor analysis
problems where detailed responses for all fuel assem-
blies are required everywhere in the reactor core. Like
FW-CADIS, the SUBSPACE approach utilizes impor-
tance maps obtained from deterministic adjoint models

to derive automatic weight-window biasing. Unlike FW-
CADIS, the SUBSPACE approach does not employ flux-
based weighting of the adjoint source term. Instead, it
utilizes pseudoresponses generated with random weights
to help identify the correlations between the importance
maps that could be used to reduce the computational time
required for global variance reduction. Numerical exper-
iments, serving as proof of principle, are presented to
compare the SUBSPACE and FW-CADIS approaches in
terms of the global reduction in standard deviation and
the associated figures of merit for representative nuclear
reactor assembly and core models.

I. INTRODUCTION

Over the course of the last five decades, stochastic
Monte Carlo methods and deterministic methods have
been developed separately for simulating particle trans-
port problems. Recently, there has been growing interest
in coupling Monte Carlo and deterministic methods by
employing a hybrid approach to combine their benefits
and overcome some of their individual deficiencies.1– 6

The main idea is to bias Monte Carlo sampling using an
estimate of the solution obtained inexpensively from a
simplified deterministic model. In the Monte Carlo com-
munity, this procedure represents a form of “variance
reduction.” The procedure has been successfully demon-
strated to reduce the variance for a single response,1–3

often representing a functional of the solution over a
region in the phase-space, i.e., a detector’s response in a
given region. Global variance reduction, however, still
remains an important challenge, especially when Monte
Carlo methods are to be used for reactor analysis appli-
cations. Global variance reduction denotes problems where
one seeks to reduce the variances for all responses eval-

uated everywhere in the phase-space, such as group fluxes,
reaction rates density, and homogenized few-group cross
sections. Several approaches have been proposed in the
literature to uniformly distribute Monte Carlo particles
throughout the domain. Among the most prominent ap-
proaches are the correction,2 the variational variance re-
duction,3 the forward-weighted consistent adjoint-driven
importance sampling4 ~FW-CADIS!, the linear tally com-
bination,5 and the coarse-mesh finite difference.6 Our
approach may be considered as a variant of the FW-
CADIS or the linear tally combination approaches. We
focus our comparison on the FW-CADIS approach since
all numerical experiments were conducted using the Mo-
naco with Automated Variance Reduction using Impor-
tance Calculations ~MAVRIC! sequence7 of the SCALE
6.0 package,8 which is based on the FW-CADIS approach.

Hybrid approaches such as FW-CADIS employ an
approximate adjoint function to assign importance values
to various regions in the phase-space. The importance of
a particle describes the contribution of this particle to the
response of interest. In principle, if the adjoint map is
known exactly and employed by a zero-variance biasing
scheme, the response could be obtained with zero vari-
ance. Solving the adjoint problem exactly, however, is as*E-mail: abdelkhalik@ncsu.edu
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difficult as solving the forward problem. Hence, it is
computationally sufficient to employ an approximation
of the adjoint solution to bias the forward Monte Carlo
solution via the use of weight windows. Given a weight
window that is not zeroed anywhere in the phase-space,
one is guaranteed to reach the exact solution in the limit.

When more than one response is needed ~assume a
total of I responses!, the adjoint-based weight-window
maps are expected to be different for different responses.
This problem may be addressed in one of three ways:
First, one could execute the Monte Carlo simulation I
times in a brute-force manner, each corresponding to a
different single-response weight-window map. Clearly,
the brute-force approach will be computationally intrac-
table as I is expected to be large for realistic problems; I
represents the total number of responses evaluated ev-
erywhere in the phase-space. Second, one could form
one weight-window map that captures the important fea-
tures of each map. This could be done by creating a linear
combination of the importance maps associated with the
original single-response weight-window maps, with the
weights reflecting the importance of each map. This is
the approach adopted by FW-CADIS, where the weights
are selected to be proportional to the inverse of the for-
ward flux. In this approach, referred to hereinafter as
FW-CADIS, a response evaluated at a region in the phase-
space will have higher weight for its weight-window map
if its corresponding flux is small. The logic behind this
approach is that regions receiving fewer particles will
have higher variances for their associated responses.
Therefore, by sending more particles to these regions,
the variances of their associated responses are expected
to decrease.

While the idea behind the FW-CADIS approach is
based on sound reasoning, it does not represent the only
way to assign weights, which is expected to depend largely
on the application of the model. Moreover, it does not
assure that the associated computational burden will be
less than that reached by the brute-force approach. The
following numerical experiment demonstrates this situ-
ation for a model involving two responses with relatively
independent weight-window maps: Consider a point de-
tector model problem with only two responses as de-
picted in Fig. 1. Each response represents a point detector
on the side of a concrete shield with the distributed source
in the center. All dimensions are in centimeters, and both
detectors are located 10 cm from the shielding surface.
Shield 1 is twice as thick as shield 2 in order to render
detector 1’s response noticeably smaller than detector 2’s
response.

Given the weight-window maps for the two re-
sponses, the total computational time with the brute-
force approach is equal to the sum of the times required
to separately reduce the variance for each detector to
the desired level, e.g., s � 4%. Employing the FW-
CADIS approach, the total time required ~represented
by number of histories! is found to be considerably

higher than for the brute-force approach. Figure 2 com-
pares the number of histories required to reach the same
level of variance for the two detectors. The first two
cases are produced using the brute-force approach, and
the last two cases are generated using the FW-CADIS
approach.

In this paper, we propose a third approach to ad-
dressing the simultaneous reduction of variances for I
responses, i.e., global variance reduction. It is denoted
as the SUBSPACE approach, and it may be considered
as a trade-off between the brute-force and the FW-
CADIS approaches, where instead of evaluating all I
weight-window maps ~brute force! or a single weight-
window map ~FW-CADIS!, only a small number r of
pseudoresponse maps are evaluated, such that 1 , r ��
I. The pseudoresponses are random linear combinations
of the original I single responses. Implementing this
approach into the FW-CADIS framework should be
straightforward ~detailed in Sec. III!, as it will only
require the execution of FW-CADIS r times with the
results combined statistically to determine the re-
sponses’ mean values and standard deviations. More-
over, the weights for the pseudoresponses are generated
randomly using the SUBSPACE approach thus eliminat-
ing the need for an extra forward model execution to
determine the flux-based weights as currently done by
the FW-CADIS approach. Finally, given the indepen-
dence of the r executions, the SUBSPACE approach
allows for coarse-grained parallelization, thereby taking
advantage of parallel computing environments.

This paper is organized as follows. Section II intro-
duces the mathematical theory behind the proposed ap-
proach and a general algorithm for its implementation. A
general algorithm is sought because we believe the idea
behind the proposed approach can be applied to other

Fig. 1. Test case for FW-CADIS and brute-force approaches.
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variance reduction techniques that employ importance
maps to bias Monte Carlo particles. For the sake of com-
parison with the FW-CADIS approach, Sec. III describes
how the proposed approach could be directly imple-
mented into the FW-CADIS framework. Numerical ex-
periments and concluding remarks are presented in
Secs. IV and V, respectively.

II. PROPOSED SUBSPACE APPROACH

The formation of the pseudoresponses and their as-
sociated weight-window maps is mathematically equiv-
alent to projecting the single-response weight-window
maps onto a subspace of smaller dimensions that cap-
tures their variability. This is possible because the I single-
response weight-window maps will likely be correlated.
This typically happens when responses represent distri-
butions that are evaluated everywhere in the phase-
space. For example, in a core model, the flux in a fuel
assembly is expected to be highly correlated to the fluxes
in the nearby assemblies. Thermal fluxes are expected to
correlate more to nearby assemblies than fast fluxes be-
cause of the shorter mean free path. Identifying these
correlations in an automated manner could be used to
identify the minimum number of weight-window maps
that are independent, denoted by r. We show that each of
the r independent correlations represents a weight-
window map that is associated with a pseudoresponse.
By reducing the variances for the pseudoresponses, one
can effectively reduce the variances for the original I
responses. If r �� I, computational savings could be

achieved. Earlier work has shown that in reactor calcu-
lations, responses representing distributions such as group
fluxes and reaction rates are highly correlated.9,10

The degree of correlations between the responses
can be described by the singular values decline of the
matrix containing the single-response importance maps.
This may be described mathematically as follows: Let ui

be the response ~i.e., tally! calculated at the i ’th mesh
cell. Mathematically, it may be described by the inner
product of the forward flux solution 1c and a response
function 6si of the form

ui � ^ 1c, 6si & and i � 1, . . . , I , ~1!

where I is the total number of mesh cells, which is the
same as the total number of tallies ~i.e., responses!. The
importance map for ui is obtained as the solution of an
adjoint problem of the form

L* 1ci
* �

]ui

] 1c
� 6si , ~2!

where

L* � adjoint transport operator

1ci
* � importance map associated with response ui .

In MAVRIC, the deterministic code7 DENOVO is used
to obtain an approximate solution 1ci

* of the adjoint prob-
lem in Eq. ~2! on a coarse grid in phase-space whose grid
points may be indexed by j � 1, . . . , J. The 1ci

* may be
written as

Fig. 2. Comparison of FW-CADIS and brute-force approaches.
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1ci
* � @ci,1

* . . . ci, J
* # T , ~3!

where ci, j
* describes the importance values of the parti-

cles entering the phase-space at point j, which eventually
contributes to the response ui . The importance maps cor-
responding to all responses may be assembled in a matrix
C of the form. We denote this matrix by single-responses-
importance ~SRI! matrix:

C � �
c1,1
* J c1, J

*

I I

cI,1
* J cI, J

* � � �
1c1
*T

I

1cI
*T� . ~4!

In the numerical experiments in Sec. IV we show
that a typical SRI matrix of interest to reactor analysis
problems exhibits a significant decline in its singular
value spectrum. This implies that a great deal of corre-
lation exists between the importance maps of its different
responses. Research in linear algebra has shown that one
could take advantage of this behavior by approximating
the matrix with other matrices of much smaller dimen-
sions. The dimension of the smaller matrices is deter-
mined by the effective rank of the matrix C ~Ref. 11!.
Linear algebra is replete with matrix decomposition meth-
ods that could be used to determine the rank of a matrix
whose elements are explicitly available, which is not the
case in our problem. Explicit evaluation of the matrix
implies evaluation of the adjoint model for all possible
responses, which is overwhelming for routine design cal-
culations. In the past 10 years, research in the applied
linear algebra community has shown that great insight
into the singular value spectrum could be obtained via
simple matrix-vector products operations employing ran-
dom vectors.12 This means that only operations of the
form CT 5hj ~where 5hj � R I is a randomly generated vec-
tor! are required to determine the decline in the singular
values that could be used to determine an effective rank
for the matrix. We show next how these randomized
matrix-vector products could be easily generated as pseudo-
responses, representing random linear combination of
the original I responses. Let Iuj be the j ’th pseudo-
response defined by

Iuj � (
i�1

I

hi, j ui for j � 1, . . . , r . ~5!

Using the definitions for ui and 1ci
* from Eqs. ~1! and ~2!,

one can write

Iuj � (
i�1

I

hi, j^ 1c, 6si & � � 1c, (
i�1

I

hi, j 6si�
and

L* D1cj
* �

] Iuj

] 1c
� (

i�1

I

hi, j 6si .

Using the linearity of the transport operator, one can
write an expression for the importance map for the pseudo-
response Iuj as

D1cj
* � (

i�1

I

hi, j 1ci
* for j � 1, . . . , r . ~6!

Note that D1cj
* is a linear combination of all I importance

maps, which can be rewritten using linear algebra nota-
tions as

D1cj
* � CT 5hj , ~7!

where 5hj
T � @h1, j . . . hI, j# . If the $ 5hj %j�1

r are randomly
generated, one can show that the vectors $ D1cj

*%j�1
r are in-

dependent and span a subspace of size r, which belongs to
the range of the matrix CT ~Refs. 9 and 12!. Let C repre-
sent the subspace generated by the vectors $ D1cj

*%j�1
r , and

C� as the orthogonal subspace. Now, split each of the im-
portance vectors into two components: one that lives in
the subspace C, $C 1ci

*%i�1
I , and the other that lives in the

subspace C�, $C
�

1ci
*%i�1

I . Using elements from random
matrix theory,12 one can show that as r is increased, the
components in the subspace C� continue to shrink, and
the components in the subspace C continue to increase.
More importantly, for most realistic problems, the com-
ponents living in the C� subspace are significantly re-
duced with a small estimate for the rank r; this is because
the major decline of the singular values is expected to hap-
pen over the first few dimensions associated with the high-
est singular values. Therefore, most of the acceleration
rendered by the proposed SUBSPACE approach is ex-
pected to happen with a small estimate for the rank r.

The general algorithm to implement this approach
may be described as follows:

Requirements:

• a general methodology that employs an impor-
tance map 1ci

* to bias Monte Carlo particles toward
a given response ui

• the capability to calculate an importance map D1cj
*

for a pseudoresponse defined as a random linear
combination of the original I responses as defined
in Eq. ~6!.

Objective:

• Identify r pseudoresponses and employ them to
reduce variance for all I responses.

Algorithm:

~a! Estimate the rank r. If no prior knowledge about
the rank is available, pick a small value, e.g.,
5 , r , 20, and execute step ~b!. Calculate the
singular value decomposition of the matrix con-
taining the importance maps for the r pseudo-
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responses: @ D1c1
D1c2 . . . D1cr # . If the singular

values do not significantly decline, increase the
estimate for r.

~b! PARALLEL DO j � 1, . . . , r

1. Generate a random vector 5hj � R I

2. Form a pseudoresponse Iuj � (i�1
I hi, j ui

3. Calculate the importance map D1cj
* associated

with Iuj

4. Bias Monte Carlo particles based on the D1cj
*

5. Tally the original I responses until the num-
ber of histories is exhausted

6. Record the responses ui, j
m and their standard

deviations ui, j
s

END DO

~c! COMBINE the responses and their standard de-
viations from the r runs as follows13:

ui
m � ui

s (
j�1

r ui, j
m

~ui, j
s !2

and
1

ui
s

� (
j�1

r 1

~ui, j
s !2

. ~8!

End Result:

• The ui
m and ui

s are the mean and the standard de-
viation, respectively, for the i ’th response calcu-
lated by the SUBSPACE approach.

This algorithm is composed of three steps. Step ~a!
requires an estimate of the rank r. In Sec. IV, we show
that the variance reduction is not very sensitive to the
choice of the rank estimate. For interested readers, we
include in the Appendix an elaborate algorithm that de-
scribes how the rank for the matrix C could be deter-
mined exactly using rex adjoint model executions, where
rex is the exact rank. Step ~b! represents an execution of
an existing variance reduction approach with a special
choice for the pseudoresponse. Since the importance func-
tion is often calculated using an adjoint model, this should
be fairly easy to implement for most codes via simple
manipulation of the right side of the adjoint equation.
Section III provides more details on this step for incor-
porating the SUBSPACE approach into the FW-CADIS
framework. Step ~c! combines the results from the r ex-
ecutions, each with N independent histories, under the
assumption that they are statistically independent.13 The
expression for the mean value implies that simulations
with high variance will have little impact on the unbiased
estimate for the mean value. The formula for the variance
implies that the overall variance is reduced as more sim-
ulations are executed, which is consistent with the law of
Monte Carlo sampling.

III. FW-CADIS–BASED IMPLEMENTATION

In this section, we discuss the implementation of the
SUBSPACE approach into the FW-CADIS framework.
FW-CADIS proceeds in two steps: First, a forward de-
terministic model is executed to calculate an estimate for
the flux everywhere in the phase-space, and second, an
adjoint model is executed. The inverse of the flux esti-
mated by the forward model is employed to design the
right side of the adjoint model, referred to as the adjoint
source, which can be expressed as the derivative of the
response with respect to the flux4 @see Eq. ~2!# . This
results in giving more weight to regions in the phase-
space where the flux is low and less weight to regions
with high flux. In addition to flux-based weights, FW-
CADIS allows for user-defined weights for each region
in the phase-space. To implement the SUBSPACE ap-
proach, the user-defined weights are selected randomly
and are assigned via the input file. This is equivalent to
setting a pseudoresponse as a random linear combination
of all responses as required by Eq. ~5!. The resulting
adjoint solution satisfies Eq. ~6!, which is equivalent to
multiplying the SRI matrix with a random vector.

Next, as discussed earlier, the SUBSPACE approach
does not require the flux-based weights, thus eliminating
the need for the extra forward model execution. Fortu-
nately, this is also possible as the FW-CADIS framework
is flexible enough to provide the user the option to bypass
forward flux weighting. Therefore, to implement the SUB-
SPACE approach, one must specify an estimate for the
rank r. Next, the FW-CADIS sequence is executed in
parallel r times with the forward flux weighting bypassed
and random weights assigned to the adjoint source; both
of these could be specified via the input cards to FW-
CADIS. After the r FW-CADIS executions are com-
pleted, a script is needed to read the responses and their
standard deviations and to statistically combine them as
given by Eq. ~8!. This implementation strategy has been
adopted in our work and is employed in Sec. IV to ana-
lyze both a core model and an assembly model.

IV. NUMERICAL EXPERIMENTS

This section is divided into three subsections. Sec-
tion IV.A employs a boiling water reactor ~BWR! assem-
bly model, and Sec. IV.B employs a pressurized water
reactor ~PWR! core model. Both compare the perfor-
mance of the FW-CADIS and SUBSPACE approaches
with an estimated rank of r � 10. Section IV.C investi-
gates the impact of the rank estimate on the variance
reduction results.

IV.A. Assembly Model

The first experiment is based on a two-dimensional
MAVRIC model for a 7 � 7 BWR assembly; a cross
section of the assembly is shown in Fig. 3. The assembly
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model represents the southeast assembly of a typical 2 �
2 BWR control cell that contains four assemblies and a
cruciform control blade. Within the scope of this prelim-
inary work, the control blades are not modeled. The BWR
assembly contains 49 fuel rods of different compositions
in a regular 7 � 7 fuel rod array. A single mesh tally is
defined over the 49 square regions each comprising a
fuel rod and its neighboring moderator within what is
commonly referred to as a fuel pin cell. The thermal flux
tallied over each fuel pin cell is employed as a response
giving rise to a total of 49 responses, i.e., I � 49.

Employing the MAVRIC procedure, the mesh tal-
lies, the corresponding responses, and their weight win-
dows are defined over each fuel pin cell. The whole array
is surrounded by a layer of zirconium and an outer layer
of water. Essential technical data of the model problem
are given in Table I.

In contrast to usual practice in reactor physics calcu-
lation where k-eigenvalue computations are performed, a
fixed-source subcritical configuration is analyzed instead
because of the current limitations of the MAVRIC
sequence—MAVRIC is the sequence in the SCALE pack-
age that embodies the FW-CADIS approach. The pub-
licly available version of the MAVRIC sequence does not
have an eigenvalue solver and is currently limited to source-
driven problems only.To overcome this limitation, a NEWT
model is employed to approximate the fission source, which
is subsequently reduced by adjusting fuel enrichment to
render a subcritical system. An isotropic fixed source dis-
tributed uniformly throughout the fuel pins is employed
to find a physical flux solution. The fuel enrichment is ad-
justed rendering a k-effective value of 0.88. Five different
fuel enrichments of 0.33%, 0.69%, 0.94%, and 1.93% 235U
and 3% gadolinium are employed. The 27 neutron and 19
photon energy group libraries from SCALE are employed
for the analysis of the BWR model. For the flux and the
reaction rate responses, the first 14 neutron groups ~10.678
eV , E , 20 MeV! define the fast group, and the last 13
groups ~E , 3.059 eV! are thermal.

Both the FW-CADIS and the SUBSPACE approaches
were employed to analyze this model with equal number
of histories. Let si

FW-CADIS and si
SUBSPACE denote the

relative standard deviations for the i ’th response—the
relative standard deviation is the ratio of the response’s
absolute standard deviation to the response’s mean value.
Figure 4 shows the reduction in the relative standard
deviation for thermal flux distribution in the assembly.

Fig. 3. A 7 � 7 BWR model.

TABLE I

BWR Model Specifications

Assembly pitch ~cm! 15.24
Fuel pitch ~cm! 1.8745
Fuel rod diameter ~cm! 1.2116
Cladding thickness ~cm! 0.1092
Canning thickness ~cm! 0.2032
Material temperature ~K! 552.833
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The reduction in the relative standard deviation resulting
from the use of the SUBSPACE approach is defined by

Dsi �
si

FW-CADIS � si
SUBSPACE

si
FW-CADIS

* 100% . ~9!

For reference, the mean of the thermal flux distribution is
also shown in Fig. 4, where each square represents the
thermal flux tallied over one pin cell.

Table II provides a more detailed comparison be-
tween the two approaches. The column in Table II la-
beled AVG is the average value of the relative standard
deviations for all I responses. The column labeled STD

represents the standard deviation of the responses’ rel-
ative standard deviations ~this is more commonly known
as the square root of the variance of variances!; this
value provides a measure of the spread of the standard
deviations throughout the phase-space. A large value
for STD indicates that the response variances are not
uniformly reduced; therefore, a small value would be
considered more favorable. Mathematically, each of these
metrics is defined as follows for a given approach k,
where k � FW-CADIS and SUBSPACE:

AVGk �
1

I (
i�1

I

si
k

TABLE II

Performance Metrics for FW-CADIS and SUBSPACE Approaches in an Assembly Model

Relative Standard Variance

Approach AVGa STDb

Number of
Monte Carlo

Particles

Deterministic
Execution Time

~s!

Monte Carlo
Execution Time

~min! FOM

FW-CADIS 0.2037 0.0454 1.00E�07c 31.48 469.88 0.0513
SUBSPACE 0.1182 0.0271 1.00E�07 173.36 581.42 0.1231

aAVG � average.
bSTD � standard.
cRead as 1.00 � 107.

Fig. 4. Variance reduction results for BWR 7 � 7 assembly model; ~a! standard deviation reduction and ~b! mean thermal flux
distribution.
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and

STDk � � 1

I � 1 (
i�1

I

~si
k � AVGk !2 .

The number of Monte Carlo particles employed by
the FW-CADIS approach is 107 particles. The same num-
ber was used by the SUBSPACE approach but distributed
over ten different runs ~corresponding to an estimated
rank of r �10! each with 106 particles. The deterministic
execution time for the FW-CADIS approach is composed
of one adjoint and one forward run. The SUBSPACE
deterministic time is composed of ten adjoint runs. The
Monte Carlo time is the time spent by the MONACO
code.a Finally, the figure of merit ~FOM! is based on the
following formula:

FOMk �
1

~AVGk !2T
,

where T is the total time including both the deterministic
and the Monte Carlo times. Notice that the deterministic
time is negligible compared to the Monte Carlo time,
which is to be expected since all deterministic calcula-
tions are based on source-driven models. These assembly
results show a 2.5 speedup factor over FW-CADIS re-
sults. Moreover, notice that the STD metric is reduced by
the same amount as the AVG metric, implying that the
SUBSPACE approach does reduce the variances in a uni-
form manner like in the FW-CADIS methodology.

IV.B. Core Model

The second numerical experiment employs a proto-
typical PWR full-core model. It is designed as a slight
variation to the benchmark problems presented in Refs. 14
and 15. The full-core model consists of 193 fuel assem-
blies ~blue regions in Fig. 5! laid out in a 17 � 17 grid

scheme and surrounded by light water ~red regions in
Fig. 5! ~colors online only!.

The cubic volume of the whole active core is 365.6 �
365.6 � 335.3 cm3. The cubic volume of each assembly
is 21.505 � 21.505 � 335.28 cm3. Two types of fuel
assemblies are modeled ~blue regions!: a UO2 fuel as-
sembly and a UO2-Gd2O3 fuel assembly. The loading
pattern of the full core is shown in Fig. 5. Each assembly
consists of a 17 � 17 grid of pin cells with each pin cell
measuring 1.265 � 1.265 cm2 in the X-Y plane.

Figure 6 shows the relative reduction in the thermal
flux distribution throughout the core resulting from using
the SUBSPACE approach. The mean thermal flux is also
displayed for reference as was done in Fig. 4

In a similar manner to Table II, the core model re-
sults are listed in Table III. Notice that the amount of the
reduction in terms of FOM is doubled as the size of the
problem is increased. Although this may not sound intu-
itive at first glance, from previous experience we have
noticed that as the size of the model is increased the
potential for reduction via response correlations is also
increased.

IV.C. Rank Estimate

In this section we demonstrate the sensitivity of the
variance reduction results to the rank estimate. As dis-
cussed earlier, one could employ a rigorous approach to
estimate the exact rank of the matrix C such as the range-
finding algorithm described in the Appendix. However,
in most applications employing Monte Carlo models, a
small estimate of the rank should be sufficient. This is
because the very first few singular values of the matrix C
display a significant decline with the rate of decline de-
creasing with increased rank. To illustrate this, the algo-
rithm in the Appendix is employed to estimate the first 30
singular values of the matrix C. This could be achieved
by executing the algorithm with different user-defined
tolerance.16

Notice that the singular values plotted in Fig. 7 fall
by three orders of magnitude by the time the tenth sin-
gular value is reached. After that, the singular values
continue to fall but at a much lower rate. Given that the
statistical uncertainties for the responses are expected to
be in the 0.1% to 1% range, only the initial reduction in
the singular values should be sufficient to estimate the
rank.

To analyze the impact of the rank estimate on the
variance reduction results, the assembly and core model
results, previously completed with r � 10, are repeated
with different estimates for the rank. Figure 8 plots the
standard deviation for one of the responses as a function
of the estimated rank. Results show that the initial de-
cline in the standard deviation occurs over the first few
singular values, which is consistent with the shape of the
singular values. After that, the reduction in the standard
deviation is negligible.

a We noticed that the time spent by MONACO is always slightly
higher when using the SUBSPACE approach, which implies
the weights for the adjoint source are supplied by the user via
the input file rather than evaluated directly by the code. To un-
derstand this, a weight-window map was generated using the
same approach employed by FW-CADIS, i.e., based on the in-
verse of the forward flux, and was then manually fed into the
MONACO code. We noticed that although the same response
means and standard deviations were obtained as with the stan-
dard MAVRIC sequence, the time required was also higher like
in the SUBSPACE approach. This implies that the MONACO
code requires additional time likely when reading the weight
windows from an input buffer. This is a minor issue and can
likely be handled by experienced code developers. For the sake
of the current work, the higher times recorded by MONACO
are employed in all FOM results, so slightly better results should
be expected upon resolution of this issue.

Wu et al. HYBRID MONTE CARLO–DETERMINISTIC METHODS FOR REACTOR ANALYSIS

NUCLEAR TECHNOLOGY VOL. 180 DEC. 2012 379



V. CONCLUSION

A new variant of a hybrid Monte Carlo–deterministic
method has been presented. In this new approach,
the correlations between the various single-response
adjoint-based weight-window maps are determined via a

SUBSPACE approach. The correlations describe a set
of pseudoresponses whose number is much smaller
than the number of original responses. By biasing the
Monte Carlo particles toward the pseudoresponses,
noticeable computational savings could be achieved.
The SUBSPACE approach has been compared to the

Fig. 5. PWR core model.

Fig. 6. Variance reduction results for prototypical PWR core model; ~a! standard deviation reduction and ~b! mean thermal flux
distribution.
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FW-CADIS approach implemented in the MAVRIC se-
quence of the SCALE code system, and the approach has
been tested on a typical BWR assembly model and a
prototypical PWR core model. The numerical experi-
ments have demonstrated the mechanics of the proposed
approach and showed a performance improvement over
the FW-CADIS methodology as measured by the FOM.
Moreover, the implementation of the SUBSPACE ap-
proach is straightforward. It requires executing the FW-
CADIS methodology a number of times ~the number is
equal to the estimated rank of the SRI matrix! with the
forward flux weighting bypassed. It was also noticed that
with more complicated geometries, one can see more
correlations between the weight windows, and hence,
more computational savings could be achieved. Future
work will focus on applying the SUBSPACE approach to
an eigenvalue problem. Moreover, the computational sav-
ings can render possible the generation of sensitivity in-
formation of responses with respect to cross sections and
the propagation of cross-section uncertainties through
Monte Carlo–based models.

APPENDIX

Let C � R I�J represent a matrix as defined in the
paper. Let « be a user-defined error tolerance. The matrix
C could be decomposed into two matrices, i.e., C �
Cr � CI�r , where Cr � CQQT has rank r and CI�r �
C~I � QQT ! has rank I � r such that Q � R J�r is a
matrix with orthonormal columns. With special require-
ments on the choice of the matrix Q, one can use Cr to
approximate C by upper-bounding the error resulting
from CI�r . In particular, one can prove with high prob-
ability that

7C~I � QQT !7 � « .

The rank r would then be defined as the minimum integer
that satisfies the above criterion for a given user-defined
tolerance. In most engineering problems, the tolerance
could be selected to match the precision of the calcula-
tions. In deterministic calculations, the tolerance could
be matched to the truncation errors induced by the nu-
merical scheme employed. In probabilistic calculations,
a much higher tolerance should be employed since in

TABLE III

Performance Metrics for FW-CADIS and SUBSPACE Approaches in a Core Model

Relative Standard Variance

Approach AVGa STDb

Number of
Monte Carlo

Particles

Deterministic
Execution Time

~s!

Monte Carlo
Execution Time

~min! FOM

FW-CADIS 0.904 0.133 1.0E�07c 1.85 74.23 0.0165
SUBSPACE 0.338 0.031 1.0E�07 9.59 97.45 0.0897

aAVG � average.
bSTD � standard.
cRead as 1.0 � 107.

Fig. 7. Singular values of the SRI matrix.

Fig. 8. Variance reduction sensitivity to rank estimate.
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most practical situations, the statistical uncertainties
rendered by the models are much higher than the trunca-
tion errors. Typical examples are « � 10�8 for determin-
istic calculations and « � 10�3 for probabilistic
calculations.

The following algorithm could be employed to de-
termine the rank12:

1. Pick a small integer s; e.g., s � 10 is suitable for
most practical calculations.

2. Generate s random vectors $ 5m j %j�1
s .

3. Calculate: $ 6wj � CT 5mj %j�1
s .

4. Given a user-defined tolerance «.

5. Given an estimate of the rank r0, generate r0 ran-
dom vectors $ 5hj %j�1

r0 .

6. Calculate: $ 5zj � CT 5hj %j�1
r0 .

7. Form an orthonormal matrix Q � R
J�r0 such that

R~Q! � span$ 5z1, . . . , 5zr0
% . This could be done via a

Gram-Schmidt orthogonalization procedure.

8. Calculate: «1 � max
j�1, . . . , s

$uj � 7~I � QQT ! 6wj7%j�1
s .

9. If 10M20p«1 . «, then the rank r0 does not satisfy
the tolerance «; increase r0 and return to step 6 until the
exact rank is identified rex .

Note that the only requirement for this algorithm is the
evaluation of the matrix-vector product, which requires
the execution of the adjoint model. This algorithm re-
quires rex adjoint model evaluations. Note that all steps
required to identify the rank are simple vector manipu-
lations, which could be done in a script outside the code;
the only requirement is the access to the importance map
calculated by the adjoint model.
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