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ABSTRACT the object. In many cases, especially when particles aedylik

to undergo multiple scattering events within the objecteise
problems are ill-conditioned and thus very difficult to sl his
is the class of problems that we address.

One of the more common tomographic techniques is the fil
tered back projection (FBP) method [1-6]. In this technjdhe
projection data can be considered as line integrals alanpatti-
cle beam lines and the tomographic method recovers thetgensi
function (the images) by doing back projection processédith
tered Fourier transform of the line integrals. However Highly
scattering objects this method has difficulty because thttesed
particles can overwhelm the signal from the unscatteret-par
cles. Even with collimated beams and collimated detectBi? F
still fails for optically thick, highly scattering problesn We will
illustrate this issue with example FBP results in the appion
section.

We cast the inverse problem as an optimization problen
and consider iterative approaches to minimizing a funetitimat
serves as a measure of the difference between the real abjgct
the latest guess (iterate). In this approach, which is nat ae
forward model capable of calculating the detector respdoss
so with an initial “guess” of the material distribution inethun-

We present advances in inverse transport methods and
demonstrate their application to neutron tomography peot
that have significant scattering. The problem we considéar-is
ference of the material distribution in an object by detectand
analysis of the radiation exiting from it. Our approach cdnés
both deterministic and stochastic optimization method&nba
material distribution that minimizes the difference betweom-
puted and measured detector responses. The main advarees ar
dimension-reduction schemes that we have designed to thke a
vantage of known and postulated constraints. One key ainstr
is that the cross sections for a given region in the objecttmus
be the cross sections for a real material. We illustrate opr a
proach using a neutron tomography model problem on which we
impose reasonable constraints, similar to those that ircpca
would come from prior information or engineering judgment.
This problem shows that our method is capable of generating
results that are much better than those of deterministidmiza-
tion methods and dramatically more efficient than those if ty
cal stochastic methods.

INTRODUCTION known object. An inverse model then creates a better “guafss”
A familiar example of an inverse problem in radiation trans- € Object structure in every iterative loop. The forwarddeio
port is tomography in medical applications, which attenpte- can then be repeated using the more accurate guess. This p|

construct the interior of a patient from transmitted andex#d cess continues until the determined material distributian-
radiation collected while illuminating the patient fronffdrent imizes the functional that characterizes the differendsveen
directions [1, 2]. We use “inverse transport’ and “tomodngp predicted and measured results.This is the fundamentakpon
to mean the inference of material distribution inside areobj ~ Pehind the model-based iterative imaging reconstructh®-{

based upon detection and analysis of radiation emerging fro BIIR) schemes. MOBIIR schemes mainly differ in their choice
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of forward model and how the spatial distributions of theicgdt
properties of the medium are updated.
A variety of optical tomography methods based on MOBIIR

on the limited information about that is obtained from dé&tets
of exiting radiation. Most methods for solving such probgeem
have focused on inferring;, 5 andg from the detection mea-

schemes have been studied in the past [7—15]. While these stud surements and have not explicitly addressed the issueasfiimd

ies have principally been in the area of low-energy x-ray imed
cal imaging, they have led to a variety of creative methods an
their general application can be extended to neutron ingadie
present here a methodology that combines both deterncinisti
stochastic iterative methods within a systematic appréacép-
plying constraints. The constraints can enforce physealities
as well as postulates about the contents of the object. GQur ap
proach dramatically reduces the effective dimension ofptie
rameter space that is ultimately searched, which drantigtibe:
creases computational effort and increases the chanceofidia s
tion that is close to reality.

To illustrate our methodology we consider problems de-
scribed by a two-dimensional X-Y Cartesian coordinateesyst

We assume an incident beam of thermal neutrons from one sidehys the objective function, depend on the functiz(s), =s(r)

of the object at a time, with measurement of exiting radratio
from the other three sides. Our forward solver employs a sin-
gle (thermal) energy group, the discrete-ordinates metbod
angular discretization, an analytic treatment of the fidtision
source, and the step-characteristic method for spatiatatiza-
tion. In this paper we do not consider the complications ofleto

or measurement errors - our aim here is to evaluate whether ou
methodology works in a simple setting that permits shargpyana
sis and sharp conclusions.

In the following section we introduce our procedure, high-
lighting the ideas that we believe are new. In Section 3 wegne
results from an illustrative model problem. In the final sattve
offer some concluding remarks.

INVERSE TRANSPORT METHODS
Neutron transport within a non-multiplying object is de-

scribed by the transport equation:
Qe (r, Q)+ (NyY(r,Q) =
1

=50 [ 9(0) +30()Q 0 (1) + Sx(1. Q).

@)

WhereZ; andZs are the total and scattering macroscopic cross
sections ang denotes the average cosine of the scattering angle.
(We have assumed linearly anisotropic scattering.) Theseet
functions are determined by the material composition ofathre
ject.

The forward transport problem is to solve for the angular
flux ¢ (which determines the scalar flgxand current)) if the
physics constants{, >, g) are provided as functions of posi-
tion. In an inverse transport problem, on the contrary, theal
task is to infer the material distribution within the objdased

material distribution from these constants. In contrakg\afea-
ture of our approach is that we treat tihaterialas our unknown
function of position, as we describe in more detail below.

We cast the inverse transport problem as an optimizatiol
problem, the goal of which is to minimize an objective fupati

o35 (%)

Here @ denotes the objective functiof, and M are the pre-
dicted and measured detection rates, respectivelyNargdthe
total number of measurements taken. The predicted valods, a

R-M
M (2

andg(r), which in turn depend on a guess for the distribution of
materials in the object. The key ingredient in the optimaat
algorithm is the method for intelligently guessing matkdliatri-
butions for which the forward transport problem will be saiv
and the resulting objective function will be computed.

Deterministic optimization methods minimize the objeetiv
function in Egn. (2) by treating the measuremeRtsand thus
the objective functiorp, as functions of the parametefs; (r),
2s(r), 9(r)}. The goal then becomes finding a $&t(r), Zs(r),
g(r)} such that the objective function is minimized. Our method
uses this approach but only as a first step in a hierarchicki-mu
step algorithm. For this step we follow the basic approach o
Klose et al. [14,15] as corrected by Scipolo [16], with some i
provements that we shall summarize briefly below.

As the modeling of the problem becomes more realistic, the
number of unknown parameters (spatial and energy-depénde
cross sections) increase drastically, which makes thendigzi
tion problem far more difficult to solve. The dimension of the
search space is the number of spatial regions (cells) titmes t
total number of unknown cross sections, which in a neutrat sc
tering problem scales as the square of the number of energ
groups or energy points. The large number of unknowns (high
dimensional space) makes the problem more ill-conditicaret!
dramatically increases the number of iterations needechdodfi
minimum. Further, in practice it is highly unlikely that tket of
parameters found in a given cell by the search algorithmowmit
respond to any real material. Thus, even if a set of paraseter
found that yields an acceptably small objective functitve, &énd
goal of determining the material distribution in the objetay
remain difficult to achieve.

These considerations motivate us to consider our probler
from a different point of view. Instead of viewing the unknusv
ascross sectionswe view the unknowns as thaterial itself.
This reduces the number of unknowns from a large number pe
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cell to only one per cell. However, it changes the nature ef th
problem and thus the methodologies needed to solve it. The un
knowns are now discrete (the material index in a given spatia
cell) instead of continuous (a real number for a given cress s
tion in a given cell). Now we cannot take meaningful deriva-
tives of the objective function with respect to an unknowd an
thus cannot apply gradient-based minimization approaches
fact, the problem now can be viewed as a combinatorial opti-
mization (CO) problem. Such problems are usually solved by
stochastic-based heuristic approaches. In such an appreac
amples of which include simulated annealing and genetig-alg
rithms, guesses for the solution (material index for eacttiap
cell) are generated using random numbers coupled with seme i
formation learned from previous guesses.

When we evaluate the direct application of standard CO
methods (TABU search, simulated annealing, genetic algo-
rithms, etc.) to our problem we find that the dimensionality o
the problems of interest is so high that the methods are kedy |
to produce results with sufficient efficiency for practicatuThe
number of possible combinations is the number of candidate m
terials raised to the power of the number of spatial cells.exe
ample, if prior knowledge suggests that the object contadris-
ing outside of a list of 10 known materials and the desiredltes
tion of the distribution is 15 15 x 15= 3375 spatial cells, then
there are 1%7° potential distributions to evaluate. Thus, while
we have dramatically reduced the number of degrees of freedo
by choosingmaterial (instead the large number of multigroup
cross sections) as our unknown in each cell, to obtain aipract
cal method we must achieve further significant reductiorthén
number of degrees of freedom.

We have devised a multi-step algorithm to accomplish this
goal. The algorithm proceeds as follows:

1. Gradient-based deterministic search: Here we apply the
basic deterministic search algorithm, in which crossieact
parameters are the unknowns. However, we employ a
simplified transport model (for example one-group or
two-group transport or diffusion), perhaps on a spatial gri
that is not as fine as the ultimate desired resolution. Thus,
the dimension of the search space is manageable.

2. Cell Grouping: Based on the results from the deterministic
optimization process, we group integionsthe cells that
are likely to contain the same material. Another kind
of region is identified as likely to contain one or more
interfaces between materials. Henceforth each cell will be
associated with a region, with materials varying by region

3. Material Restriction: The purpose of this step is to narrow
the material candidates to be considered in each regior
Given the few-group parameters found in step 1 for the
cells in a given region, an algorithm determines which
materials could realistically have few-group parameteas t
are similar, and then places those materials in the materic
candidate library (MCL) for that region.

. Further Constraints. To further reduce the search space
we can impose other constraints that embody prior knowl-
edge or that are postulated. For example, we could constral
the algorithm to consider only material sub-objects with
relatively sharp boundaries as opposed to fragmentar
objects. We could bias the stochastic search process so th
it favors a small number of material regions embedded in &
single-material background. The chosen constraintsicestr
the kinds of material distributions that will be consides=d
viable candidates in the final step.

5. Stochastic-based Combinatorial Optimization: In this
stage we produce a sequence of guesses for the material d
tribution and compute the objective function for each guess
We apply a stochastic-based heuristic search method, ir
formed by the constraints and biases chosen in step 4, t
select a material in each cell. At this stage a full-fidelity
transport forward model is applied to evaluate the objectiv
function for each material distribution. The algorithm-ter
minates either when a suitably small objective function is
found or when an iteration limit is reached.

We remark that we have implemented several improvement
to the approach described by Klose et al. [14, 15] and cardect
by Scipolo [16]. First, we perform a variable change to imgos
non-negativity constraints on cross sections; this is ritesd in
a forthcoming publication [17]. To increase efficiency we ap
ply a Krylov subspace iterative technique that speeds up eac
forward calculation. We employ a nonlinear conjugate grati
(CG) [18] updating scheme as the heart of our search proeedu
and integrate Brent’s method [19] into the associated diea&rch
algorithm. We also allow illumination of the object from &lur
sides of a rectangular object in 2D, with each illumination-p
ducing a set of measurements. All four sets are includeden th
sum that defines the objective function.

The following section demonstrates our algorithm by apply-
ing it to a model problem that contains significant scattgrin

according to some chosen constraints (see step 4). After APPLICATIONS TO TOMOGRAPHY

this grouping, the forthcoming search process will work
on regions rather than cells, which greatly reduces the

We consider a model problem with two materials inside an
object, with an “inclusion” of one material embedded in acka

search-space dimension and thus greatly saves computationground” of another material. Fig. 1 is a schematic diagram fo

time.

the problem.
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Figure 1. Schematic diagram of the test problem
Table 1. Material properties
Material ~ Water  Iron
>s(1/em) 0.7362 0.9672
2; (/lem) 0.7435 1.1788
g 0.037 0.012
2y (L/em) 0.7163 1.1672
mfplcm)  1.345 0.8483
c 0.9902 0.8204

Table 1 lists the properties of the materials in the testprob
lem. The transport cross sectiany (), mean free pathnffp and
scattering ratiod) are deduced properties which are defined as:

b2
c— S

1
i =2t—0%, mfp= 5 ST (3

We list these three properties because they are usuallydesad
important and useful characteristics of the physical mwhlFor
example, by observing the magnitudenafpandc, we may state

that our test problem is optically thick and highly scatigriWe
will use Z;; as a representative factor to infer material distribution
in our example problem.

We have attempted to solve this problem with a traditional
direct tomography tool, i.e., a filtered back projection EjB
method. To give the FBP method the best possible chance f
succeed, we employed collimated beams and collimated-dete
tors. However, even with collimation, if a problem is sufictly
thick and highly scattering the scattered particles wilitcibute
more to the detector signal than will the directly transedtpar-
ticles. This is the case with our test problem. This violdte t
fundamental assumption behind FBP, and thus the methad fai
to find the inclusion. If we repeat this exercise with all dime
sions reduced by a factor of five, then FBP does indeed find th
inclusion.

Our interest in this paper is in problems, such as the on
shown in Fig. 1, that are too thick and highly scattering émtt
niques such as FBP. The general methodology that we dedcrib
in the previous section is our attempt to address such prable
Here we apply this general methodology to the test object o
Fig. 1, with the following specific choices:

1. Our forward transport model is a one-group equation with
linearly anisotropic scattering in both the first and laspst
In the first step we use a spatial grid of 2@0 cells; in the
final step we use 48 40 cells. (The methodology permits
an even higher-fidelity model in the last step, but we want
to keep this initial demonstration simple.)

2. We use the same model with the exact material distributiot
to generate the “measurements” and we do not add an
noise. A practical algorithm must deal with noise, and there
are established methods for doing so, but again we wish t
keep this demonstration simple.

3. We empiloy a cell-grouping algorithm that assumes a singls
inclusion in a background of a single material. It divides
the domain into three regions: background, inclusion, anc
interface.

4. We begin with a small MCL of ten materials. In addition to
water and iron, the library includes paraffin, boron, siico
nitrogen, cadmium, aluminum, natural uranium and high
enriched uranium (HEU). For all ten materials we used
thermal cross sections averaged with a roughly-Maxwelliar
spectrum.

5. We impose constraints that enforce a single inclusion ir
a background of a single material. We do not allow the
interface to be arbitrarily ragged; for example, a “fingeft” o
one material that is one cell wide is not permitted to extenc
into the other material to a depth beyond one cell. We
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1 1000 iterations. By this stage we have the similar outcome fo

parameterg; andg as well in our inverse problem though we
only demonstrat@;, as an representative in Fig. 2.
5 We may use these information to indicate the real physica
material in the object and in fact many traditional tomodmap
25 methods did work out problems in this way. However, there are
significant drawbacks associated with this approach. Famex
25 e T8 W 25 e T80 ple, the converged cross sections al'ways have dev'iat.ionstfre

(a) Real distribution (b) Initial homogeneous distribution real ones and they are not constrained to be realistic tloette f
may not correspond to any real material. In addition, it ig-us
ally difficult to tell which material is inside the object frothis
limited information, and it is also difficult to locate the lnadary
and thus quantify how much area is occupied by the inclusion
The following contents we are about to present in this paper i
attempting to overcome these drawbacks.

Here we emphasize that we would continue our process b

working onmaterialsthemselves rather thamoss sectiongFirst
we group the cells based on the knowledge gained from the firs

25 5 75 10 25 5 75 10 stage. We devise a criterion to divide the problem into cffe
(0 Resuls atr 100 feraions (@) Resuls aftr 1000 fertions regions. Many criteria are possible; for this model probles
set up the following simple criterion as:

75

Y [em]
Y [cm]

Y [em]
Y [cm]

| l .
0.7 0.75 0.8 0.85 0.9
mean max meal H H H
Figure 2. Transport cross sectiol) distribution obtained from de- 2 > 2 (I - ) = Reg-lon 3 (inclusion)
terministic CG based iterative search scheme. (a) TheSiggback- < SO+ B(Z - ™) = Region 1 (background)4)
ground is water and square inclusion is iron). (b) Initial guessfor otherwise= Region 2 (interface)
(c) and (d) are results after 100 and 1000 iterations, respectively.

we usea = 0.8, = 0.2 in our demonstration.

employ bias in the stochastic material-choice algorithm fo The result of cell grouping is illustrated in Fig. 3. By far
the interface region, such that a cell close to the inclusion We successfully group the cells of our problem into 3 regions
region is more likely to be assigned the inclusion material Packground region (region 1), interface region (regionr) &-

and a cell close to the background region is more likely to clusion region (region 3).
be assigned the background material. The next step is to restrict the material candidates in the in

clusion and background regions by comparing cross sectibns
6. The stochastic method employed in the final step is ex- €ach materialin MCL to the cross sections that were founkien t
tremely simple. Each guess is determined independently deterministic search process. We first calculatemar associ-
from all other guesses (no learning is attempted), using ran ated with each material for each region. Many “error” mestric
dom numbers for each degree of freedom. The biasing de- and restriction criteria are possible; for this illusteative have
scribed above is employed, the constraints described abovechosen the following metric:

are imposed.
Fig. 2 illustrates the results from the first step (gradient- o _ error — 1 <‘ N I DILE DI I DAL > )
based search for cross sections anfdctor). Fig. 2(a) is just CANPIUEDIN R PIUE I PIHE I

the realZ;, distribution of the problem as shown in Fig. 1, we

repeat it here just for comparison purpose with it to our-opti  Heres™ js the cross section of a given material in MCL axid
mized results. We start the deterministic optimizationcess is cross section averaged over the inclusion/backgrougione
with a homogeneous material distribution ( see Fig. 2(b)ddA e restrict the material candidates for the region basechen t
Fig. 2(c) and (d) are thE distribution among the objectyielded  fo|lowing criterion: if there exists one and only one magéthat
from the process of updating schemes of our inverse model. We hasen < a, the region is determined to be that materiali.e.,
expect the more accurate results as the more iteratesccanie e find the material in the region. Otherwise we include al ma
We see that the gradient-based continuous search proaiss in  terials for whichen < b. Herea is a relatively small number
cates that there is an inclusion and roughly tells its loredter andb is a relatively larger number; for this illustration we use
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configurations and avoided time-consuming calculationsmsf
realistic distributions.

The results of applying this algorithm are shown in Fig. 4
and quantitatively assessed in Table 2. With only 200 randon
guesses (50 for each candidate inclusion material), thégzen
ration shown in the figure was found and selected as the best
the 200 distributions because it had the lowest objectimetfan.
The graphical solution is strikingly similar to the correlistri-
bution, but more important is the quantitative comparigoomm
in Table 2. Here we find that the method produegactly the
correct masgarea corresponds to mass) of ttwrect material
and almost exactly theorrect center-of-mass locatiorThis is
exactly what one would like to get from a neutron tomography
method.

Y [cm]

25 5 7.5 10
X [cm]

Figure 3. Regions identified by the cell grouping process (color de
notes region, not any particular numerical value).

a=0.01, b=0.5. At the end of this stage we have significantly
reduced the material search dimension for the final step.

The final step is the combinatorial optimization process.
single iteration in this step proceeds as follows. Firstrttate-
rial in the inclusion region is selected from the restricsed of
candidates, as is the material in the background regionthir
test problem our algorithm determined that the backgrouad m
terial must be water; thus region 1 was always chosen to berwat
Our algorithm determined that the inclusion could be anyafe
four different materials: iron, water, paraffin, naturahoium.
(Implementation detail: instead of randomly selectingitiodu- 0 25 5 7.5 10
sion material for each iteration, which would have apposid X fem]
fOUg_h'}’ 2_5% of th? iterations to each candidate materifaldwe Figure 4. Material distribution yields from the stochastic based
terministically assigned 25% of the iterations to each ate heuristic optimization after 200 iterations (50 iterations per candidate
material.) With water assigned to region 1 and a choice made j,.usion material).
for region 3, the algorithm proceeded to assign one of thege t
materials to each cell in the interface region (region 2).

The assignment began with the cells adjacent to region 3
and marched out to those adjacent to region 1, proceedirg-as f
lows. For each cell in the inner ring the material was chosen Table 2. Inclusion material location and area comparison
based on a random number and a bias factor. The probability
that the inclusion material was assigned to a cell was approx

Y [cm]

imately the cell’s distance to region 1 divided by the dis&n Case Real (Fig. 2a) CO Result (Fig. 4)
from rggion 3 to region 1._ After materials were assigned & th X-center (cm) 30 297
inner ring of interface-region cells we checked whetherake

signments for other interface-region cells were deterthibg Y-center (cm) 7.5 7.49
deﬁned constraints. For e>_<amp|e, if water were assigneahto a Area (n?) 4.0 4.0
entire row of cells, then all interface cells between that emd

the water region must also be water - otherwise the inclusion Iron/Water 0.0417 0.0417

region would be disjoint or more ragged than permitted by the
imposed constraint. This greatly reduced the number ofvaib
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CONCLUSIONS

We have introduced some advances in inverse transport
methods and applied them to solve 2D neutron tomography prob
lems. Our main idea is to employ multiple steps that work to-

gether to dramatically reduce the difficulty of the combamet

optimization problem that ultimately produces an estinudtie

material distribution in the object being investigated.eteps
implement a series of novel dimension-reduction techreguel
integrate them to achieve the desired result.

Results from a simple model problem illustrate the poténtia

power of these ideas. An optically thick problem with a high
scattering ratio is solved almost exactly with very modeshe¢
putational effort, as described in the previous section.

Our main ideas and overall step-by-step approach leave

room for considerable exploration and innovation that doon-

prove on what we have shown and expand its applicability. We

have made simple choices here for constraints and biasse th
could surely be improved and placed on firmer theoreticatl-foo

ing. We have ignored the issues of measurement noise and mode

error, both of which must be addressed in any practical nietho

there are proven methods for this, but it remains to be shown
that they can be employed within our framework. We have not
discussed constraints that could be imposed in problents wit
more than two materials or more than one inclusion; straight

forward generalizations of this paper’s constraints aresitbe,

but there may be superior approaches. Further work is needed

on algorithms for restricting materials based on resutimfthe
deterministic search. In practical applications the seanay

use a crude few-group model and thus produces few-group cros

sections, but each material is actually characterized leyggn

dependent or many-group cross sections.
known weighting spectra it is not clear how to compare the few

group cross sections with the real material cross sectibings,

we believe the approach that we have outlined and illustrate
here is very promising, but much work remains before it can be

applied to practical problems.
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