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ABSTRACT

We present advances in inverse transport methods and
demonstrate their application to neutron tomography problems
that have significant scattering. The problem we consider isin-
ference of the material distribution in an object by detection and
analysis of the radiation exiting from it. Our approach combines
both deterministic and stochastic optimization methods tofind a
material distribution that minimizes the difference between com-
puted and measured detector responses. The main advances are
dimension-reduction schemes that we have designed to take ad-
vantage of known and postulated constraints. One key constraint
is that the cross sections for a given region in the object must
be the cross sections for a real material. We illustrate our ap-
proach using a neutron tomography model problem on which we
impose reasonable constraints, similar to those that in practice
would come from prior information or engineering judgment.
This problem shows that our method is capable of generating
results that are much better than those of deterministic minimiza-
tion methods and dramatically more efficient than those of typi-
cal stochastic methods.

INTRODUCTION

A familiar example of an inverse problem in radiation trans-
port is tomography in medical applications, which attemptsto re-
construct the interior of a patient from transmitted and reflected
radiation collected while illuminating the patient from different
directions [1, 2]. We use “inverse transport” and “tomography”
to mean the inference of material distribution inside an object
based upon detection and analysis of radiation emerging from

the object. In many cases, especially when particles are likely
to undergo multiple scattering events within the object, inverse
problems are ill-conditioned and thus very difficult to solve. This
is the class of problems that we address.

One of the more common tomographic techniques is the fil-
tered back projection (FBP) method [1–6]. In this technique, the
projection data can be considered as line integrals along the parti-
cle beam lines and the tomographic method recovers the density
function (the images) by doing back projection process to the fil-
tered Fourier transform of the line integrals. However, forhighly
scattering objects this method has difficulty because the scattered
particles can overwhelm the signal from the unscattered parti-
cles. Even with collimated beams and collimated detectors FBP
still fails for optically thick, highly scattering problems. We will
illustrate this issue with example FBP results in the application
section.

We cast the inverse problem as an optimization problem
and consider iterative approaches to minimizing a functional that
serves as a measure of the difference between the real objectand
the latest guess (iterate). In this approach, which is not new, a
forward model capable of calculating the detector responsedoes
so with an initial “guess” of the material distribution in the un-
known object. An inverse model then creates a better “guess”of
the object structure in every iterative loop. The forward model
can then be repeated using the more accurate guess. This pro-
cess continues until the determined material distributionmin-
imizes the functional that characterizes the difference between
predicted and measured results.This is the fundamental concept
behind the model-based iterative imaging reconstruction (MO-
BIIR) schemes. MOBIIR schemes mainly differ in their choice
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of forward model and how the spatial distributions of the optical
properties of the medium are updated.

A variety of optical tomography methods based on MOBIIR
schemes have been studied in the past [7–15]. While these stud-
ies have principally been in the area of low-energy x-ray medi-
cal imaging, they have led to a variety of creative methods and
their general application can be extended to neutron imaging. We
present here a methodology that combines both deterministic and
stochastic iterative methods within a systematic approachfor ap-
plying constraints. The constraints can enforce physical realities
as well as postulates about the contents of the object. Our ap-
proach dramatically reduces the effective dimension of thepa-
rameter space that is ultimately searched, which dramatically de-
creases computational effort and increases the chance of a solu-
tion that is close to reality.

To illustrate our methodology we consider problems de-
scribed by a two-dimensional X-Y Cartesian coordinate system.
We assume an incident beam of thermal neutrons from one side
of the object at a time, with measurement of exiting radiation
from the other three sides. Our forward solver employs a sin-
gle (thermal) energy group, the discrete-ordinates methodfor
angular discretization, an analytic treatment of the first-collision
source, and the step-characteristic method for spatial discretiza-
tion. In this paper we do not consider the complications of model
or measurement errors - our aim here is to evaluate whether our
methodology works in a simple setting that permits sharp analy-
sis and sharp conclusions.

In the following section we introduce our procedure, high-
lighting the ideas that we believe are new. In Section 3 we present
results from an illustrative model problem. In the final section we
offer some concluding remarks.

INVERSE TRANSPORT METHODS

Neutron transport within a non-multiplying object is de-
scribed by the transport equation:

Ω•ψ(r,Ω)+Σt(r)ψ(r,Ω) =

1
4π

Σs(r)
[

φ(r)+3g(r)Ω•J(r)
]

+Sext(r,Ω).
(1)

WhereΣt andΣs are the total and scattering macroscopic cross
sections andg denotes the average cosine of the scattering angle.
(We have assumed linearly anisotropic scattering.) These three
functions are determined by the material composition of theob-
ject.

The forward transport problem is to solve for the angular
flux ψ (which determines the scalar fluxφ and currentJ) if the
physics constants (Σt , Σs, g) are provided as functions of posi-
tion. In an inverse transport problem, on the contrary, the usual
task is to infer the material distribution within the objectbased

on the limited information about that is obtained from detections
of exiting radiation. Most methods for solving such problems
have focused on inferringΣt , Σs andg from the detection mea-
surements and have not explicitly addressed the issue of inferring
material distribution from these constants. In contrast, akey fea-
ture of our approach is that we treat thematerialas our unknown
function of position, as we describe in more detail below.

We cast the inverse transport problem as an optimization
problem, the goal of which is to minimize an objective function:

Φ =
1
2

N

∑
i=1

(

Pi −Mi

Mi

)2

. (2)

Here Φ denotes the objective function,P and M are the pre-
dicted and measured detection rates, respectively, andN is the
total number of measurements taken. The predicted values, and
thus the objective function, depend on the functionsΣt(r), Σs(r),
andg(r), which in turn depend on a guess for the distribution of
materials in the object. The key ingredient in the optimization
algorithm is the method for intelligently guessing material distri-
butions for which the forward transport problem will be solved
and the resulting objective function will be computed.

Deterministic optimization methods minimize the objective
function in Eqn. (2) by treating the measurementsPi , and thus
the objective functionΦ, as functions of the parameters{Σt(r),
Σs(r), g(r)}. The goal then becomes finding a set{Σt(r), Σs(r),
g(r)} such that the objective function is minimized. Our method
uses this approach but only as a first step in a hierarchical multi-
step algorithm. For this step we follow the basic approach of
Klose et al. [14,15] as corrected by Scipolo [16], with some im-
provements that we shall summarize briefly below.

As the modeling of the problem becomes more realistic, the
number of unknown parameters (spatial and energy-dependent
cross sections) increase drastically, which makes the optimiza-
tion problem far more difficult to solve. The dimension of the
search space is the number of spatial regions (cells) times the
total number of unknown cross sections, which in a neutron scat-
tering problem scales as the square of the number of energy
groups or energy points. The large number of unknowns (high-
dimensional space) makes the problem more ill-conditionedand
dramatically increases the number of iterations needed to find a
minimum. Further, in practice it is highly unlikely that theset of
parameters found in a given cell by the search algorithm willcor-
respond to any real material. Thus, even if a set of parameters is
found that yields an acceptably small objective function, the end
goal of determining the material distribution in the objectmay
remain difficult to achieve.

These considerations motivate us to consider our problem
from a different point of view. Instead of viewing the unknowns
ascross sections, we view the unknowns as thematerial itself.
This reduces the number of unknowns from a large number per
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cell to only one per cell. However, it changes the nature of the
problem and thus the methodologies needed to solve it. The un-
knowns are now discrete (the material index in a given spatial
cell) instead of continuous (a real number for a given cross sec-
tion in a given cell). Now we cannot take meaningful deriva-
tives of the objective function with respect to an unknown and
thus cannot apply gradient-based minimization approaches. In
fact, the problem now can be viewed as a combinatorial opti-
mization (CO) problem. Such problems are usually solved by
stochastic-based heuristic approaches. In such an approach, ex-
amples of which include simulated annealing and genetic algo-
rithms, guesses for the solution (material index for each spatial
cell) are generated using random numbers coupled with some in-
formation learned from previous guesses.

When we evaluate the direct application of standard CO
methods (TABU search, simulated annealing, genetic algo-
rithms, etc.) to our problem we find that the dimensionality of
the problems of interest is so high that the methods are not likely
to produce results with sufficient efficiency for practical use. The
number of possible combinations is the number of candidate ma-
terials raised to the power of the number of spatial cells. For ex-
ample, if prior knowledge suggests that the object containsnoth-
ing outside of a list of 10 known materials and the desired resolu-
tion of the distribution is 15×15×15= 3375 spatial cells, then
there are 103375 potential distributions to evaluate. Thus, while
we have dramatically reduced the number of degrees of freedom
by choosingmaterial (instead the large number of multigroup
cross sections) as our unknown in each cell, to obtain a practi-
cal method we must achieve further significant reductions inthe
number of degrees of freedom.

We have devised a multi-step algorithm to accomplish this
goal. The algorithm proceeds as follows:

1. Gradient-based deterministic search: Here we apply the
basic deterministic search algorithm, in which cross-section
parameters are the unknowns. However, we employ a
simplified transport model (for example one-group or
two-group transport or diffusion), perhaps on a spatial grid
that is not as fine as the ultimate desired resolution. Thus,
the dimension of the search space is manageable.

2. Cell Grouping: Based on the results from the deterministic
optimization process, we group intoregions the cells that
are likely to contain the same material. Another kind
of region is identified as likely to contain one or more
interfaces between materials. Henceforth each cell will be
associated with a region, with materials varying by region
according to some chosen constraints (see step 4). After
this grouping, the forthcoming search process will work
on regions rather than cells, which greatly reduces the
search-space dimension and thus greatly saves computation
time.

3. Material Restriction: The purpose of this step is to narrow
the material candidates to be considered in each region.
Given the few-group parameters found in step 1 for the
cells in a given region, an algorithm determines which
materials could realistically have few-group parameters that
are similar, and then places those materials in the material
candidate library (MCL) for that region.

4. Further Constraints: To further reduce the search space
we can impose other constraints that embody prior knowl-
edge or that are postulated. For example, we could constrain
the algorithm to consider only material sub-objects with
relatively sharp boundaries as opposed to fragmentary
objects. We could bias the stochastic search process so that
it favors a small number of material regions embedded in a
single-material background. The chosen constraints restrict
the kinds of material distributions that will be consideredas
viable candidates in the final step.

5. Stochastic-based Combinatorial Optimization: In this
stage we produce a sequence of guesses for the material dis-
tribution and compute the objective function for each guess.
We apply a stochastic-based heuristic search method, in-
formed by the constraints and biases chosen in step 4, to
select a material in each cell. At this stage a full-fidelity
transport forward model is applied to evaluate the objective
function for each material distribution. The algorithm ter-
minates either when a suitably small objective function is
found or when an iteration limit is reached.

We remark that we have implemented several improvements
to the approach described by Klose et al. [14, 15] and corrected
by Scipolo [16]. First, we perform a variable change to impose
non-negativity constraints on cross sections; this is described in
a forthcoming publication [17]. To increase efficiency we ap-
ply a Krylov subspace iterative technique that speeds up each
forward calculation. We employ a nonlinear conjugate gradient
(CG) [18] updating scheme as the heart of our search procedure
and integrate Brent’s method [19] into the associated line-search
algorithm. We also allow illumination of the object from allfour
sides of a rectangular object in 2D, with each illumination pro-
ducing a set of measurements. All four sets are included in the
sum that defines the objective function.

The following section demonstrates our algorithm by apply-
ing it to a model problem that contains significant scattering.

APPLICATIONS TO TOMOGRAPHY

We consider a model problem with two materials inside an
object, with an “inclusion” of one material embedded in a “back-
ground” of another material. Fig. 1 is a schematic diagram for
the problem.
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Figure 1. Schematic diagram of the test problem

Table 1. Material properties

Material Water Iron

Σs (1/cm) 0.7362 0.9672

Σt (1/cm) 0.7435 1.1788

g 0.037 0.012

Σtr (1/cm) 0.7163 1.1672

mfp(cm) 1.345 0.8483

c 0.9902 0.8204

Table 1 lists the properties of the materials in the test prob-
lem. The transport cross section (Σtr ), mean free path (mfp) and
scattering ratio (c) are deduced properties which are defined as:

Σtr = Σt −gΣs, m f p=
1
Σt
, c=

Σs

Σt
. (3)

We list these three properties because they are usually considered
important and useful characteristics of the physical problem. For
example, by observing the magnitude ofmfpandc, we may state

that our test problem is optically thick and highly scattering. We
will useΣtr as a representative factor to infer material distribution
in our example problem.

We have attempted to solve this problem with a traditional
direct tomography tool, i.e., a filtered back projection (FBP)
method. To give the FBP method the best possible chance to
succeed, we employed collimated beams and collimated detec-
tors. However, even with collimation, if a problem is sufficiently
thick and highly scattering the scattered particles will contribute
more to the detector signal than will the directly transmitted par-
ticles. This is the case with our test problem. This violate the
fundamental assumption behind FBP, and thus the method fails
to find the inclusion. If we repeat this exercise with all dimen-
sions reduced by a factor of five, then FBP does indeed find the
inclusion.

Our interest in this paper is in problems, such as the one
shown in Fig. 1, that are too thick and highly scattering for tech-
niques such as FBP. The general methodology that we described
in the previous section is our attempt to address such problems.
Here we apply this general methodology to the test object of
Fig. 1, with the following specific choices:

1. Our forward transport model is a one-group equation with
linearly anisotropic scattering in both the first and last steps.
In the first step we use a spatial grid of 20×20 cells; in the
final step we use 40×40 cells. (The methodology permits
an even higher-fidelity model in the last step, but we want
to keep this initial demonstration simple.)

2. We use the same model with the exact material distribution
to generate the “measurements” and we do not add any
noise. A practical algorithm must deal with noise, and there
are established methods for doing so, but again we wish to
keep this demonstration simple.

3. We employ a cell-grouping algorithm that assumes a single
inclusion in a background of a single material. It divides
the domain into three regions: background, inclusion, and
interface.

4. We begin with a small MCL of ten materials. In addition to
water and iron, the library includes paraffin, boron, silicon,
nitrogen, cadmium, aluminum, natural uranium and high
enriched uranium (HEU). For all ten materials we used
thermal cross sections averaged with a roughly-Maxwellian
spectrum.

5. We impose constraints that enforce a single inclusion in
a background of a single material. We do not allow the
interface to be arbitrarily ragged; for example, a “finger” of
one material that is one cell wide is not permitted to extend
into the other material to a depth beyond one cell. We
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Figure 2. Transport cross section (Σtr ) distribution obtained from de-
terministic CG based iterative search scheme. (a) The realΣtr (back-
ground is water and square inclusion is iron). (b) Initial guess forΣtr .
(c) and (d) are results after 100 and 1000 iterations, respectively.

employ bias in the stochastic material-choice algorithm for
the interface region, such that a cell close to the inclusion
region is more likely to be assigned the inclusion material
and a cell close to the background region is more likely to
be assigned the background material.

6. The stochastic method employed in the final step is ex-
tremely simple. Each guess is determined independently
from all other guesses (no learning is attempted), using ran-
dom numbers for each degree of freedom. The biasing de-
scribed above is employed, the constraints described above
are imposed.

Fig. 2 illustrates the results from the first step (gradient-
based search for cross sections andg factor). Fig. 2(a) is just
the realΣtr distribution of the problem as shown in Fig. 1, we
repeat it here just for comparison purpose with it to our opti-
mized results. We start the deterministic optimization process
with a homogeneous material distribution ( see Fig. 2(b) ). And
Fig. 2(c) and (d) are theΣtr distribution among the object yielded
from the process of updating schemes of our inverse model. We
expect the more accurate results as the more iterates carried on.
We see that the gradient-based continuous search process indi-
cates that there is an inclusion and roughly tells its location after

1000 iterations. By this stage we have the similar outcome for
parametersΣt andg as well in our inverse problem though we
only demonstrateΣtr as an representative in Fig. 2.

We may use these information to indicate the real physical
material in the object and in fact many traditional tomography
methods did work out problems in this way. However, there are
significant drawbacks associated with this approach. For exam-
ple, the converged cross sections always have deviations from the
real ones and they are not constrained to be realistic there forth
may not correspond to any real material. In addition, it is usu-
ally difficult to tell which material is inside the object from this
limited information, and it is also difficult to locate the boundary
and thus quantify how much area is occupied by the inclusion.
The following contents we are about to present in this paper is
attempting to overcome these drawbacks.

Here we emphasize that we would continue our process by
working onmaterialsthemselves rather thancross sections. First
we group the cells based on the knowledge gained from the first
stage. We devise a criterion to divide the problem into different
regions. Many criteria are possible; for this model problemwe
set up the following simple criterion as:

Σtr > Σmean
tr +α(Σmax

tr −Σmean
tr )⇒ Region 3 (inclusion)

Σtr < Σmean
tr +β (Σmax

tr −Σmean
tr )⇒ Region 1 (background)

otherwise⇒ Region 2 (interface),

(4)

we useα = 0.8,β = 0.2 in our demonstration.
The result of cell grouping is illustrated in Fig. 3. By far

we successfully group the cells of our problem into 3 regions:
background region (region 1), interface region (region 2) and in-
clusion region (region 3).

The next step is to restrict the material candidates in the in-
clusion and background regions by comparing cross sectionsof
each material in MCL to the cross sections that were found in the
deterministic search process. We first calculate anerror associ-
ated with each material for each region. Many “error” metrics
and restriction criteria are possible; for this illustration we have
chosen the following metric:

em = error =
1
3

(∣

∣

∣

∣

Σm
s −Σr

s

Σm
s +Σr

s

∣

∣

∣

∣

+

∣

∣

∣

∣

Σm
t −Σr

t

Σm
t +Σr

t

∣

∣

∣

∣

+

∣

∣

∣

∣

Σm
tr −Σr

tr

Σm
tr +Σr

tr

∣

∣

∣

∣

)

. (5)

HereΣm is the cross section of a given material in MCL andΣr

is cross section averaged over the inclusion/background region.
We restrict the material candidates for the region based on the
following criterion: if there exists one and only one material that
hasem < a, the region is determined to be that materialm; i.e.,
we find the material in the region. Otherwise we include all ma-
terials for whichem < b. Herea is a relatively small number
andb is a relatively larger number; for this illustration we use
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Figure 3. Regions identified by the cell grouping process (color de-
notes region, not any particular numerical value).

a= 0.01, b= 0.5. At the end of this stage we have significantly
reduced the material search dimension for the final step.

The final step is the combinatorial optimization process. A
single iteration in this step proceeds as follows. First themate-
rial in the inclusion region is selected from the restrictedset of
candidates, as is the material in the background region. Forthis
test problem our algorithm determined that the background ma-
terial must be water; thus region 1 was always chosen to be water.
Our algorithm determined that the inclusion could be any oneof
four different materials: iron, water, paraffin, natural uranium.
(Implementation detail: instead of randomly selecting theinclu-
sion material for each iteration, which would have apportioned
roughly 25% of the iterations to each candidate material, wede-
terministically assigned 25% of the iterations to each candidate
material.) With water assigned to region 1 and a choice made
for region 3, the algorithm proceeded to assign one of these two
materials to each cell in the interface region (region 2).

The assignment began with the cells adjacent to region 3
and marched out to those adjacent to region 1, proceeding as fol-
lows. For each cell in the inner ring the material was chosen
based on a random number and a bias factor. The probability
that the inclusion material was assigned to a cell was approx-
imately the cell’s distance to region 1 divided by the distance
from region 3 to region 1. After materials were assigned to the
inner ring of interface-region cells we checked whether theas-
signments for other interface-region cells were determined by
defined constraints. For example, if water were assigned to an
entire row of cells, then all interface cells between that row and
the water region must also be water - otherwise the inclusion
region would be disjoint or more ragged than permitted by the
imposed constraint. This greatly reduced the number of allowed

configurations and avoided time-consuming calculations ofun-
realistic distributions.

The results of applying this algorithm are shown in Fig. 4
and quantitatively assessed in Table 2. With only 200 random
guesses (50 for each candidate inclusion material), the configu-
ration shown in the figure was found and selected as the best of
the 200 distributions because it had the lowest objective function.
The graphical solution is strikingly similar to the correctdistri-
bution, but more important is the quantitative comparison shown
in Table 2. Here we find that the method producesexactly the
correct mass(area corresponds to mass) of thecorrect material
and almost exactly thecorrect center-of-mass location. This is
exactly what one would like to get from a neutron tomography
method.
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Figure 4. Material distribution yields from the stochastic based
heuristic optimization after 200 iterations (50 iterations per candidate
inclusion material).

Table 2. Inclusion material location and area comparison

Case Real (Fig. 2a) CO Result (Fig. 4)

X-center (cm) 3.0 2.97

Y-center (cm) 7.5 7.49

Area (cm2) 4.0 4.0

Iron/Water 0.0417 0.0417
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CONCLUSIONS

We have introduced some advances in inverse transport
methods and applied them to solve 2D neutron tomography prob-
lems. Our main idea is to employ multiple steps that work to-
gether to dramatically reduce the difficulty of the combinatorial
optimization problem that ultimately produces an estimateof the
material distribution in the object being investigated. The steps
implement a series of novel dimension-reduction techniques and
integrate them to achieve the desired result.

Results from a simple model problem illustrate the potential
power of these ideas. An optically thick problem with a high
scattering ratio is solved almost exactly with very modest com-
putational effort, as described in the previous section.

Our main ideas and overall step-by-step approach leave
room for considerable exploration and innovation that could im-
prove on what we have shown and expand its applicability. We
have made simple choices here for constraints and biases; these
could surely be improved and placed on firmer theoretical foot-
ing. We have ignored the issues of measurement noise and model
error, both of which must be addressed in any practical method;
there are proven methods for this, but it remains to be shown
that they can be employed within our framework. We have not
discussed constraints that could be imposed in problems with
more than two materials or more than one inclusion; straight-
forward generalizations of this paper’s constraints are possible,
but there may be superior approaches. Further work is needed
on algorithms for restricting materials based on results from the
deterministic search. In practical applications the search may
use a crude few-group model and thus produces few-group cross
sections, but each material is actually characterized by energy-
dependent or many-group cross sections. In the absence of
known weighting spectra it is not clear how to compare the few-
group cross sections with the real material cross sections.Thus,
we believe the approach that we have outlined and illustrated
here is very promising, but much work remains before it can be
applied to practical problems.
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