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H I G H L I G H T S
c Hybrid Monte Carlo Deterministic Method based on Gaussian Process Model is introduced.
c Method employs deterministic model to calculate responses correlations.
c Method employs correlations to bias Monte Carlo transport.
c Method compared to FW-CADIS methodology in SCALE code.
c An order of magnitude speed up is achieved for a PWR core model.
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A new variant of Monte Carlo—deterministic (DT) hybrid variance reduction approach based on Gaussian

process theory is presented for accelerating convergence of Monte Carlo simulation and compared with

Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) approach implemented

in the SCALE package from Oak Ridge National Laboratory. The new approach, denoted the Gaussian

process approach, treats the responses of interest as normally distributed random processes. The

Gaussian process approach improves the selection of the weight windows of simulated particles by

identifying a subspace that captures the dominant sources of statistical response variations. Like the FW-

CADIS approach, the Gaussian process approach utilizes particle importance maps obtained from

deterministic adjoint models to derive weight window biasing. In contrast to the FW-CADIS approach,

the Gaussian process approach identifies the response correlations (via a covariance matrix) and employs

them to reduce the computational overhead required for global variance reduction (GVR) purpose. The

effective rank of the covariance matrix identifies the minimum number of uncorrelated pseudo responses,

which are employed to bias simulated particles. Numerical experiments, serving as a proof of principle,

are presented to compare the Gaussian process and FW-CADIS approaches in terms of the global

reduction in standard deviation of the estimated responses.

Published by Elsevier Ltd.
1. Introduction

Interest in Monte Carlo (MC) models for particle transport
applications, such as nuclear reactor criticality calculations, has
increased in the past decade. On the one hand, a MC simulation
can model the complex physics of radiation transport in reactor
analysis applications more accurately. This is because a MC
simulation does not make as many simplifying assumptions as
deterministic models, such as resonance calculations, do. Also, it
can handle more complex reactor and fuel assembly geometries.
However, MC simulation requires much longer computer run
time than deterministic simulation in order to accumulate suffi-
cient number of histories to reach statistically significant results.
Ltd.

: þ1 919 515 5115.

l-Khalik).
Although the continuing growth of computer power is expanding
the range of MC applications, there is still a need for advanced
approaches to speed up MC convergence. In our context, conver-
gence means that the standard deviation of the quantity of
interest diminishes below a user-defined value. Accelerating the
convergence of Monte Carlo Simulation implies the ability
to reach convergence with fewer number of MC-simulated
particles. In this manuscript, we focus on global variance reduc-
tion techniques for reactor physics models, where tallies are
required everywhere in the phase space.

Several hybrid DT-MC approaches (Haghighat and Wagner,
2003; Densmore and Larsen, 2003; Becker et al., 2007) have been
developed recently for global variance reduction (GVR). The basic
idea is to employ deterministic models (both forward and adjoint)
to bias source particles and assign appropriate particle impor-
tance maps to MC models. If this is done properly, hybrid
approaches can accelerate the convergence of MC simulation,
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that is, obtain acceptable reduction in the statistical deviations of
the responses of interest with less computational overhead.
The term ‘‘variance reduction’’ is often used for approaches
intended to accelerate Monte Carlo simulations. We focus here
on techniques that are based on response biasing via so-called
weight window maps. In these techniques, MC-simulated parti-
cles are biased in the phase space (energy and space) to maximize
the number of particles contributing to a specific response of
interest, which results in reducing the associated variance accord-
ing to the MC Law of large numbers, i.e.,sp1=

ffiffiffiffi
N
p

.
On the assumption that the statistical deviation of responses

resulting from mathematical modeling and simulation of the
radiation transport can be treated as a Gaussian process (GP)
(Kennedy and O’Hagan, 2001), a new MC-DT hybrid approach for
GVR was recently developed and denoted GP approach (Zhang
and Abdel-Khalik, 2011a). Here, we describe the principle behind
this approach and compare it with the Forward-Weighted Con-
sistent Adjoint Driven Importance Sampling approach (FW-
CADIS) (Wagner et al., 2009), which is currently implemented in
the SCALE package from Oak Ridge National Laboratory (SCALE,
2009). FW-CADIS method employs both the forward and the
adjoint solutions from deterministic transport calculations to
produce efficient biased source map and particle weight window
map and, thus, to accelerate the Monte Carlo simulation. The GP
method presented here is similar to the FW-CADIS method, but it
uses a new way to construct the required weighting factors,
which is based on the Gaussian process theory. In the FW-CADIS
method, these weighting factors are simply the reciprocals of the
response quantities.

A central requirement for GP methods is construction of a
covariance matrix that describes the correlations between the
responses. In the initial phases of this work (Zhang and Abdel-
Khalik, 2011a), the covariance matrix was constructed using
analog MC simulation results. In this paper, we introduce a new
approach using deterministic calculation. This is paramount to
realistic applications because the covariance matrix must be
estimated inexpensively.

Moreover, several variants of the GP approach are introduced and
compared with the FW-CASIS approach in performance. In particular,
we analyze the effects of employing a combined subspace-GP
approach and a combined GP-FW-CADIS approach. The subspace
approach was introduced recently as a different way to bias MC-
simulated particles (Zhang and Abdel-Khalik, 2011b).

Finally, in contrast to the earlier work, the GP approach is
applied here to a higher-dimensional problem to investigate the
scalability of the approach. A representative prototypical PWR core
model is employed. The MAVRIC sequence (a Monte Carlo simula-
tion code with the capability of biasing particles with deterministic
models) in SCALE package is employed in this study to facilitate the
comparison of the GP and the FW-CADIS approaches.
2. Mathematical description

GP theory assumes that random fluctuations of a response
follow a process that can be described by a normal distribution.
For GP-based models with many responses, the correlations
between the responses are described by a covariance matrix. The
covariance matrix is symmetric positive definite, with diagonal
entries equal to the variances of the responses and off-diagonal
entries representing the covariance between the responses.
A diagonal and well-conditioned matrix implies that all responses
are statistically independent of one another, i.e., the number of
independent degrees of freedom is equal to the number of
responses and, hence, no single biasing technique can be used to
reduce all of them simultaneously. However, if the matrix is dense
and poorly conditioned (i.e., numerically singular), then the
responses are highly correlated. Moreover, the effective number
of degrees of freedom determined by the numerical rank of the
matrix is smaller than the number of responses. If these correla-
tions are known a priori, one can elect to bias MC-simulated
particles directly towards the independent degrees of freedom
rather than the original responses. In such case, the associated
computer overhead will be reduced. The lower the effective rank
of the covariance matrix, the more correlations between the
responses, and the lower the computational overhead needed to
reduce the variances globally. The key to this approach is the
ability to estimate the covariance matrix before initiating MC
simulation.

Let r
,
¼ r1 r2 . . . rn
� �T

ARn be a vector of n responses of
interest representing n random Gaussian processes. Consider N

realizations of these random processes denoted by

rk
i

n on

i ¼ 1
, k¼ 1,2,. . .,N:

An unbiased estimate of the covariance between the two
responses ri and rj can be given by

cov ri,rj

� �
¼ lim

N-1

1

N�1

XN

k ¼ 1

rk
i�r̂i

� �
rk

j�r̂j

� �
ð1Þ

where ri is the unbiased estimate of the mean of the response ri,
i.e.,

r̂i ¼ lim
N-1

1

N

XN

k ¼ 1

rk
i :

The covariance information between all pairs of responses can
be represented compactly by a symmetric covariance matrix
CARn�n such that Cij ¼ cov ri,rj

� �
. This matrix can be rewritten

using singular value decomposition as follows (Golub and Van
Loan, 1996):

C¼WRWT
¼
Xn

i ¼ 1

siw
,

iw
,

T

i , ð2Þ

where W¼ ½w
,

1 w
,

2 . . . w
,

r �ARn�r is a matrix of n orthonormal
singular vectors and R¼diag{s1,s2,....,sn} is a diagonal matrix of
nonzero singular values.

In an earlier work (Zhang and Abdel-Khalik, 2011b), a concept
of a pseudo response was introduced to alter the biasing for MC-
simulated particles. We recall the definition here for the sake of a
complete discussion.

Using elements of probability theory, one can show that all
responses of the form

xi ¼w
,

T

i r
,

,

denoted hereinafter as pseudo responses, are uncorrelated, i.e.,

cov xi,xj

� �
¼ 0 for ia j, and cov xi,xið Þ ¼ si:

Each pseudo response represents a linear combination of the
original responses; the weights are determined by the elements of
the singular vectors of the covariance matrix.

The idea here is that, if the rank of the covariance matrix is
significantly smaller than its dimensions, as observed in the earlier
work, the number of pseudo responses will be much smaller than
the number of original responses. One can take advantage of this
situation by designing weight windows to bias MC-simulated
particles towards the pseudo responses rather than the original
responses. A pseudo response with very small singular value
implies that the associated linear combination of the original
responses has a very small statistical variation and, hence, no MC-
simulated particles need to be sampled to calculate it.
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To provide a basis for comparison, we contrast the GP approach
to the FW-CADIS approach (Wagner et al., 2009). In both of these
approaches, the weight window-based biasing is determined by
solving an adjoint equation of the form (demonstrated first for a
single response)

Ln f
,n

i

 !
¼
@ri

@f
,

,

where Ln is the adjoint transport operator with appropriate
boundary conditions, f

,

is the forward flux, and f
,n

i is the adjoint
flux corresponding to the ith response ri. In nuclear engineering,
forward flux (the solution obtained from standard neutron trans-
port equation) is a quantity corresponding to the total length
traveled by all neutrons per unit time and volume (it works as an
important indicator of the intensity of neutron activities within
the nuclear reactor), and adjoint flux is, as the name implies, the
solution obtained from the equation in adjoint format of neutron
transport. Adjoint flux is an important quantity in nuclear reactor
analysis because its magnitude physically indicates the impor-
tance of the neutron in its phase space.

If f
,n

i is employed to determine weight windows, one can
reduce the variance of the response ri only, implying generally
high variances for the other responses. To achieve GVR, the
FW-CADIS approach formulates a single response of the form

xFW-CADIS
¼
Xn

i ¼ 1

1

fi

ri ð3Þ

with an associated adjoint model of the form

Ln f
,n

i

 !
¼
Xn

i ¼ 1

1

fi

@ri

@f
,

ð4Þ

In this technique, more MC-simulated particles are sent to
regions in the phase space where the flux is low. The rationale
behind this is that regions with lower flux receive fewer
MC-simulated particles and their associated responses are there-
fore expected to have higher variances. To render variances
uniform across the phase space, more particles are encouraged
to go to lower flux regions.

Employing the terminology introduced for the GP approach,
one can think of the FW-CADIS approach as also utilizing a pseudo
response where the weights for the linear combination are now
determined by the reciprocal of the flux. In the GP approach,
however, the pseudo responses are calculated from the singular
vectors of the covariance matrix as shown above.

The covariance matrix describing the statistical correlations
between different responses can be estimated using an inexpen-
sive deterministic model. To simulate statistical uncertainties,
recall that the interaction between a neutron and a target nucleus
is a random process whose probability is characterized by cross-
sections. By sampling cross-sections randomly, one can estimate
the response correlations.

Based on this idea, the covariance matrix C is constructed by
performing l deterministic forward model executions. Denote the
n responses generated in the jth model execution by a vector r

,
j,

where j¼1,2,y,l. After l executions, the estimator for the covar-
iance matrix can be constructed as follows:

C¼
1

l�1

Xl

j ¼ 1

r
,

j�
^
r
,

	 

r
,

j�
^
r
,

	 
T

, ð5Þ

where
^
r
,

is a vector of estimated means of all responses, i.e.,^
r
,
¼ 1

l

Pl

j ¼ 1

r
,

j.
In addition to Eq. (2), the covariance matrix C can also be
approximated with truncated SVD approach as follows:

Cr ¼WRWT
¼
Xr

i ¼ 1

siw
,

iw
,T

i , ð6Þ

where r is known as the effective rank of the covariance matrix.
The effective rank is estimated using the inequality

JC�CrJoe, ð7Þ

where e is a user-defined tolerance. As mentioned before, the GP
pseudo responses are described by

xGP
j ¼w

,T

j r
,

, j¼ 1,2,:::,r: ð8Þ

The MAVRIC sequence is then executed to bias the MC solution
to minimize the variance of the pseudo responses. In its basic
implementation, the GP approach executes the MAVRIC sequence
r times with r adjoint model evaluations of the form

Ln f
,n

i

 !
¼
@xGP

i

@f
,

i¼ 1,:::,r: ð9Þ

The premise is that reducing the variance of the r pseudo
responses simultaneously reduces the variances of all original
responses because of the correlations.

Note that, in the FW-CADIS technique, only one adjoint and
one forward model executions are required. The GP approach,
however, requires at least r forward flux executions to construct
the covariance matrix. Moreover, it requires r different adjoint
calculations to bias the solution towards the various pseudo
responses. These additional adjoint runs have to be considered
when one compares figures of merit, which are usually provided
in Monte Carlo techniques to assist users in assessing the
statistical behavior of the obtained results. In this work, the
unbiased estimators for the response’s mean and variance deter-
mined from all r simulations are calculated as follows (Papoulis
and Pillai, 2002):

x¼

Pr
j ¼ 1

1
s2

j

xjPr
j ¼ 1

1
s2

j

and
1

s2
¼
Xr

j ¼ 1

1

s2
j

, ð10Þ

where x represents a given response, while xj and sj are the mean
value and the standard deviation of the response of interest
evaluated in the jth run. These formulas assume that all evaluations
are statistically independent, which follows from the independence
of the pseudo responses. Moreover, the formulas ensure that
simulations with high variance will have little impact on the
unbiased estimate of the mean value. The variance formula implies
that the overall variance gets smaller as more simulations are
executed, which is consistent with the law of Monte Carlo sampling.

It is important to note that the potential value of the GP
approach can be realized for models with high dimensional phase
space and many responses. Like any projection approach, the
potential for reduction increases with increasing dimensionality
of the model. When only few responses are required, however, it
is better to design weight window maps that target the responses
of interest only. Our primary interest focuses on two applications.
One of them is to use MC models to generate the few-group cross-
sections for core wide calculations. In this case, thousands of
assembly calculations must be completed. Given the correlations
between these models, a huge reduction in the computational
overhead may be possible. The other application is core wide MC
models, where the flux is required everywhere in the phase space.

We note that the approach described above is the simplest
one to take advantage of response correlation. In effect, the GP
approach has reduced the number of original responses to r

pseudo responses, which have been reduced separately using



Fig. 1. PWR core model.
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adjoint-based weight windows. Here we propose two other biasing
approaches: one is combining the pseudo responses by scaling each
one based on its associated singular values, the other is coupling the
GP and FW-CADIS approaches, that is, combining the pseudo
responses by scaling each pseudo responses by an appropriately
selected pseudo flux. The mathematical representatives of the
pseudo responses for these two approaches are as follows:
(1)
 combined GP approach

xj ¼w
,

T

j r
,

,j¼ 1, � � � ,r

xcom ¼
Xr

j ¼ 1

sjxj

; ð11Þ
(2)
Fig. 2. Covariance matrix singular values.
coupled GP and FW-CADIS approach

cj ¼w
,T

j f
,

,j¼ 1, � � � ,r

xj ¼w
,T

j r
,

,j¼ 1, � � � ,r

xcom ¼
Xr

j ¼ 1

1

cj

sjxj

ð12Þ
3. Numerical experiments

A prototypical PWR full-core model has been developed
employing the standard SCALE geometry utility. It is designed
as a slight variation of the published benchmark problems
(Yamamoto et al., 2002; Douglass et al., 2010). The full-core
model consists of 193 fuel assemblies laid out in a 17�17 grid
scheme and surrounded by light water. The cubic volume of the
whole active core is 365.6�365.6�335.3 cm3. The cubic volume
of each assembly is 21.505�21.505�335.28 cm3. Two types of
fuel assemblies are modeled: a UO2 and a UO2–Gd2O3 fuel
assembly. Fig. 1 shows the loading pattern of the full-core. Each
assembly consists of a 17�17 grid of pin cells with each pin cell
measuring 1.265�1.265 cm2 in the X–Y plane.

The Denovo code, a deterministic neutron transport solver
with both forward and adjoint calculation capabilities in the
MAVRIC sequence, was employed to estimate the covariance
matrix. Fig. 2 shows the normalized singular values of the
covariance matrix. Note that the singular values decline quickly
over several orders of magnitude in fewer than 20 model
runs. This indicates that the corresponding responses of interest
(thermal flux in this case) are highly correlated.

Fig. 3 shows the procedure for determining the effective rank
of covariance matrix. A cutoff of r¼12 (solid horizontal line) is
selected so that the error in Eq. (7) would not exceed the desired
statistical deviation of the responses.

To compare the various proposed hybrid approaches, we
employed a simple metric, which describes the relative reduction
in standard deviation of quantities of interest defined as follows:

e¼ sApproach�sFW-CADIS

sFW-CADIS
� 100%, ð13Þ

where sApproach is the standard deviation of quantities of interest
for the approach considered, and all comparisons are done with
the FW-CADIS approach.



Fig. 3. Estimate of the effective rank of the covariance matrix.
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Fig. 4. Comparison of standard deviations of the thermal flux responses provided

by GP and FW-CADIS.
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Fig. 5. Comparison of standard deviations of the thermal flux responses provided

by combined GP and FW-CADIS.
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Fig. 6. Comparison of standard deviations of the thermal flux responses provided

by Coupled GP&FW-CADIS and FW-CADIS.
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No figure-of-merit comparisons were done in this study, as MC
calculations dominated the total computational time (the MC
computer time is in the order of hours, while deterministic time is
in the order of seconds). In the future, a more complete compar-
ison based on the figure-of-merit type metric will be performed to
help compare the different approaches. This will be done as our
future work will focus on the eigen-value problem, where
deterministic models are expected to take more time, especially
for high dimensional problems.

Results in Fig. 4 show that the standard deviations of spatial
thermal fluxes in the simple reactor are reduced on average by a
factor of four as compared with the FW-CADIS approach. Regard-
ing the combined GP and GP&FW-CADIS hybrid approaches,
Figs. 5 and 6 show similar levels of variance reduction. Slightly
better performance is observed with the GP&FW-CADIS approach.

On average, all approaches show a reduction in the standard
deviation of thermal flux response by a factor between three and
four, which translates into fewer histories by a factor of 10–16
to reach the same variance as with the FW-CADIS approach.
An earlier paper on FW-CADIS reported a potential 6-10-fold
gain in speed over the analog approaches (Wagner et al., 2009).
The results suggest that, when the FW-CADIS and GP approaches
are combined, one can increase speed by a factor of up to 100.
4. Conclusion

A new approach to global variance reduction is presented,
which is based on the Gaussian process theory, and its results are
compared with the results of the FW-CADIS approach. The
Gaussian process approach takes advantage of correlations
between the variances of the various responses, which are
described by the covariance matrix. Deterministic calculations
are employed to construct an estimate of the covariance matrix
by randomly sampling cross-sections. A full-core model is imple-
mented and analyzed. A significant rank reduction is observed for
the covariance matrix, implying that only few adjoint evaluations
are needed to perform global variance reduction. Current work
has focused on the fixed-source problem only. The ultimate goal
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of our work is to apply the global variance reduction to
eigen-value problems.
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