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INTRODUCTION 

Generalized perturbation theory (GPT) has been 
widely applied to sensitivity analysis of engineering 
systems models for decades. It is proven to be an efficient 
tool to calculate sensitivities in various applications such 
as uncertainty quantification, adaptive simulation and 
design optimization [1-3]. GPT is computationally 
advantageous when the number of responses of interest is 
relatively small compared to the number of input 
parameters. However, in applications where both the 
number of input parameters and output responses become 
significantly large, GPT can become computationally 
intractable due to the considerable number of adjoint 
calculations needed. In addition, for engineering systems 
that are modeled stochastically, e.g., the Monte-Carlo 
particle transport model commonly used in reactor 
analysis benchmark calculation, there currently exist no 
general extensions of GPT theory. 

To enable sensitivity analysis of generalized 
responses in Monte-Carlo models, the GPT-free method, 
recently developed for deterministic models [4], is 
employed. GPT-free is based on the idea that the 
eigenvalue is implicitly dependent on all generalized 
responses, representing functionals of the flux vector. 
This implies that the sensitivities of generalized responses 
with respect to cross-sections can be linearly related to 
eigenvalue sensitivities. A reduced order model based on 
subspace theory employs first order derivatives of the 
eigenvalue with respect to cross-sections, sampled at 
random cross-sections values, to identify a subspace. This 
subspace is subsequently explored for sensitivity 
information for generalized responses using forward 
sensitivity analysis approach. This precludes the need to 
construct the response-specific inhomogeneous adjoint 
equation as required by GPT theory. This salient feature 
of the GPT-free method makes it particularly suitable for 
sensitivity analysis application in large scale models, 
where the construction of GPT equations is either 
infeasible or impractical. 

Ref. [4] provides details on the GPT-free theory and 
demonstrates its application to deterministic radiation 
transport models. This summary describes recent efforts 
to extend the applicability of GPT-free method to Monte 
Carlo models. As proof of principle, the method is 
demonstrated using a Monte Carlo EPR assembly model.  

GPT-FREE METHODOLOGY 

The idea of GPT-free is based on the following two 
observations. First, any generalized response, e.g. reaction 
rate in a given region (space and energy 1 ) in the flux 
phase space, can be expressed as a function of the flux 
vector. Similarly, the k eigenvalue (or simply k)
represents a ratio of the neutron production and loss terms 
which are both functions of the flux values everywhere in 
the phase space. Therefore, k may be implicitly related to 
all generalized responses of interest, described 
mathematically by: 

                                1( , , )mk k R R                         (1) 

Here iR  may be thought of as a set of elementary 
responses, from which any other response can be derived. 
Elementary responses represent the microscopic reaction 
rates for all nuclides calculated at all regions in the flux 
phase space 2 . If the GPT-free approach allows one to 
calculate these elementary responses, then any 
generalized response of interest could be readily 
calculated. Through the chain rule of differentiation, it is 
easy to show that the derivative of k with respect to cross-
sections, compactly referred to as the k sensitivity vector 
(or profile), is a linear combination of all responses’ 
sensitivity vectors, i.e. 
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              (2) 

The elements of the vector dk d  represent the first 
order derivatives of k with respect to cross-sections 
(commonly referred to as sensitivity coefficients). 
Similarly, the vector idR d  contains the sensitivity 
coefficients for the ith response, and idk dR is a scalar 
quantity representing the derivative of k with respect to 
the ith response, which is expected to be a function of 
cross-sections, composition, geometry, etc. The cross-
sections are described by a vector of length n, n .

Second, recalling the definition of the gradient from 
calculus, the sensitivity vector for a given response is the 
                                                          
1 The time dependence will be treated in future work.
2 In reality, these elementary responses will not be calculated; they are 
only employed abstractly to derive the GPT-free theory.
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direction in the cross-sections space that results in the 
maximum response change. Perturbations in cross-
sections that are orthogonal to the sensitivity vector will 
produce zero first order variations in the response.  

Now returning to the representation in Eq.(2), the 
implication is that the k sensitivity vector belongs to the 
subspace spanned by the responses sensitivity vectors. If 
this subspace is known a priori and has a small dimension 
r, that is much smaller than the dimension of the cross-
sections space n, one can perform a forward sensitivity 
analysis excluding all cross-sections perturbations that are 
orthogonal to the subspace. This results in reducing the 
effective dimensionality of the model, and thereby the 
computational cost of forward sensitivity analysis. In Ref. 
[4], it is shown that by evaluating the k sensitivity vector 
with random cross-sections perturbations, this subspace 
can be identified.  

To assess the quality of the subspace, an error metric 
is developed as follows: let denote the subspace 
determined by the GPT-free method. Let Q be an 
orthonormal matrix of rank r whose columns span the 
subspace . Let  represent an arbitrary cross-section 
perturbation, which may be decomposed into two 
orthogonal components as follows [5]: 

                            ,                         (3) 

where the components  and  represent, 
respectively, the component of cross-sections perturbation 
that is parallel and orthogonal to the GPT-free subspace. 
If the subspace  is known as a priori, one can calculate 

 via projection theory [5] as follows 

                       TQQ .        (4) 

This projection operation is illustrated in Fig. 1. 

TQQ

Fig. 1. The projection of  onto .

Therefore cross-sections perturbations can be further 
expressed as: 

                        TQQ . (5) 

By restricting cross-sections perturbations to the subspace 
only, the implication is that the cross-sections variations 
orthogonal to the subspace will produce negligible 
variations in the responses, i.e. 

                   0i iR R 0  (6) 

Eq.(6) describes the basic idea for the -metric 
calculated for all responses of interest in order to assess 
the performance of the subspace. Moreover, it allows one 
to estimate the size of the subspace required to meet a 
user-defined error tolerance. Detailed discussion on the 
significance of this approach and the statistical meaning 
of this metric may be found in Ref. [4].  

EPR ASSEMBLY MODEL 

In this summary, a European Pressurized Reactor 
(EPR) assembly model is studied serving as a test bed for 
the application of the GPT-free method. The model is 
originally developed for the Monte Carlo code MCNP [6] 
and has been converted for the TSUNAMI-3D [7] 
sequence in the SCALE code package [8]. The Monte 
Carlo-based KENO-V.a module in TSUNAMI-3D 
sequence solves for both the fundamental forward and 
adjoint fluxes which are subsequently used by the SAMS 
module to calculate the sensitivities of the k eigenvalue. 
SAMS employs traditional perturbation theory approach 
to calculate the first order derivatives of k with respect to 
cross-sections.  

Fig. 2. Schematic view of the EPR assembly. 
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Note that the GPT-free method does not restrict the 
manner by which the first order derivatives are calculated. 
It however requires that one has access to a capability that 
generates first-order derivatives for k at user-defined input 
cross-section values.  

The EPR assembly, depicted in Fig. 2, consists of 91 
fuel pins laid over a 10 x 10 grid with a square-shaped 
coolant channel in the middle of the assembly. UO2
nuclear fuels with 7 different U-235 enrichments are 
employed. In this preliminary study, only the fission and 
capture cross-sections of the fuel nuclides, including U-
235, U-236, U-238, Np-237, Pu-239, Pu-240, Pu-231, are 
considered as input parameters whose sensitivities are to 
be calculated. With a 238 energy group structure, the total 
number of input parameters is 2x7x238 = 3332. The 
reference eigenvalue is given by: .
Note that the statistical uncertainty is in the order of 10 
pcm. This error represents deviations in the k due to the 
statistical nature of Monte Carlo calculations, and is 
therefore reasonable to expect the same level of 
discrepancy for the GPT-free results, if the 
implementation is successful. 

1.069968 0.0001k

In this study, the sensitivity coefficients for k are 
calculated via a traditional perturbation theory approach 
which combines the fundamental solutions for the 
forward and adjoint eigenvalue problem. This is done by 
the SAMS sensitivity evaluation module.  

GPT-free employs a range finding algorithm 
approach to construct the subspace [9, 10]. The algorithm 
is briefly re-iterated here: 

1. Randomly perturb cross-sections pert, 0i i

2. Execute the sensitivity analysis sequence in 
SCALE to calculate 

i
dk d

3. Repeat r times and form the decomposition: 

1
... n r

r
dk d dk dQR

4. Evaluate the metric; increase r until error is 
below user-defined tolerance. 

The metric for the k eigenvalue is shown in Fig. 3 
as the dimension of the subspace is increased. The pertk
represents the exact value for k due to a general cross-
section perturbation.  
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Fig. 3. The  metric for the eigenvalue. 

The represents the GPT-free approximation, 
resulting from restricting the cross-section perturbations 
to the GPT-free subspace. The cross-section perturbations 
associated with both cases are given by: 

appk

                        
pert 0

app 0
TQQ

.            (7) 

Results indicate that the error initially declines with 
increasing the dimension of the subspace. The rate of 
error decline decreases and a plateau behavior develops 
starting at approximately r=300. This is one order of 
magnitude smaller than the number of input cross-
sections, n=3332. Note that the minimum error reached is 
about 10 pcm which is of the same order of magnitude of 
the statistical uncertainty in the estimated k value. 

To check the adequacy of the subspace to capture 
generalized responses, the thermal flux values in different 
pins are employed as responses. Employed are 25 
different cases, in each case the cross-sections were 
randomly perturbed, and the exact variations in the 
thermal flux values are calculated. The GPT-free theory is 
then used to calculate an estimate for the flux variations. 
Fig. 4 shows the thermal flux error for a representative 
pin for each of the 25 cases studied.  The variations on the 
y-axis are normalized to the average thermal flux value. 
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Fig. 4. GPT-free errors for thermal flux. 

        Errors are consistently low and of the same order of 
magnitude as the statistical error of forward calculations, 
which is found to be 0.02%. 

CONCLUSIONS 

GPT-free method is successfully applied to a Monte 
Carlo based EPR model to perform sensitivity analysis of 
generalized responses with respect to cross-sections. A 
reduced order model is employed to reduce the effective 
number of cross-sections in order to enable a forward 
sensitivity analysis; thereby precluding the need for 
setting up GPT equations. The algorithm requires access 
to the sensitivities of the k eigenvalue only.  

Ongoing work is focusing on extending this 
methodology to include depletion effects for deterministic 
models. If successful, we will investigate application to 
Monte Carlo models. 
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