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INTRODUCTION

Variance reduction techniques is usually employed to
accelerate the convergence of Monte Carlo (MC) simulation.
Hybrid deterministic-MC methods [1, 2, 3] have been recently
developed to achieve the goal of global variance reduction.
Hybrid methods employ deterministic models (both forward
and adjoint) to bias source particles and assign appropriate
importance map to MC models. If done properly, hybrid
methods have been shown to accelerate the convergence of
MC simulation - that is obtaining acceptable reduction in the
statistical uncertainties for the responses of interest with less
computational overhead.

Under the assumption that the statistical uncertainties
resulting from the radiation transport may be treated as a
Gaussian Process (GP) [4], a new hybrid approach for global
variance reduction was presented in an earlier publication [5].
The principle behind this approach is recalled here along with
a comparison to FW-CADIS method [6, 7], which is currently
implemented in the SCALE package [8]. Unlike previous
work, in which the covariance matrix describing the Gaussian
process was calculated using analog MC calculation, this
summary estimates the covariance matrix using a deterministic
model. In previous work, MC model was used as a proof
of principle, but in realistic calculations, the covariance
matrix must be estimated inexpensively, hence the need to
approximate it using a deterministic model. The construction
of the covariance matrix as needed by the GP method is
implemented in the MAVRIC sequence of SCALE to facilitate
the comparison of the GP and the FW-CADIS approaches.
Building on the work presented before which focused on
simplified BWR assembly models [5], we apply the GP
approach to a higher dimensional problem representing a
prototypical PWR core model.

MATHEMATICAL DESCRIPTION

GP theory assumes that random fluctuation of a response
follows a process that can be described by a normal
distribution. If the statistical uncertainties for all responses of
interest (say the group fluxes everywhere in the domain) can
be treated as GPs, one could describe the correlations between
these uncertainties via a covariance matrix. If this matrix is
diagonal and well-conditioned, it implies that all responses
have independent uncertainties, and hence no single biasing
technique can be used to reduce all of them simultaneously.
However, if the matrix is dense and ill-conditioned, one
could in principle reduce the computational overhead required

to reduce the uncertainties everywhere by taking advantage
of their correlations. The lower the effective rank of the
covariance matrix, the more correlations between responses,
and the less computational overhead needed to reduce the
variances globally.

Details on the GP methodology may be found in
authors’ previous summary [5]. The main contribution of
this summary is to construct the covariance matrix C by
employing inexpensive deterministic model. To simulate
statistical uncertainty using a deterministic model, recall that
the interaction between a neutron and a target nucleus is a
random process whose probability is characterized by cross-
sections. By sampling cross-sections randomly, one can
estimate how the responses are correlated and hence construct
an approximate covariance matrix.

The covariance matrix C is constructed by performing
l deterministic forward model executions. Denote the n
responses, generated in the jth model execution, by a vector
⇀
r j, where j = 1, 2, ..., l. After l executions, the estimator for
covariance matrix may be constructed as follows:

C =
1

l − 1

l∑
i=1

(
⇀
r j − �̂r

) (
⇀
r j − �̂r

)T
, (1)

where �̂r is a vector of estimated means of all responses, e.g.

�̂r =
1
l

l∑
j=1

⇀
r j .

The covariance matrix C may also be rewritten via singular
value decomposition (SVD) as follows [9]:

C =WΣWT =

n∑
i=1

σi
⇀
wi

⇀
w

T

i , (2)

where W =
[
⇀
w1

⇀
w2 ....

⇀
wn

]
∈ Rn×n is a matrix of n

orthonormal singular vectors, Σ = diag {σ1, σ2, ...., σn} is a
diagonal matrix of n nonzero singular values. The covariance
matrix C can also be approximated with truncated SVD
approach as follows:

Cr =WΣWT =

r∑
i=1

σi
⇀
wi

⇀
w

T

i , (3)

where r is known as the effective rank of the covariance
matrix. The effective rank is estimated utilizing the inequality
as follows:

‖C − Cr‖ < δ , (4)
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where δ is a user-defined tolerance. After the decomposition
in Eqn. (2) is calculated and the effective rank r is determined
by Eqn. (4), the GP approach formulates r pseudo responses
of the form:

ξGP
j =

⇀
w

T

j
⇀
r, j = 1, 2, ..., r . (5)

Here r is the effective rank of the unknown covariance matrix
and ⇀

r represents the response vector. The MAVRIC sequence
is then executed to bias the MC solution to minimize the
variance of the pseudo responses. The premise is that by
reducing the variance of the pseudo responses, the variances
of all original responses are simultaneously reduced because
of the correlations.

Note that in the FW-CADIS approach, only one adjoint
and one forward model executions are required. The GP
approach however requires at least r forward flux executions
to construct the covariance matrix. Moreover, it requires r
different adjoint calculations to bias the solution towards the
various pseudo responses. These additional adjoint runs have
to be considered when comparing figure of merits.

It is important to address that the potential value of
the GP approach can be realized for models with high
dimensional phase space and many responses. Like any
projection approach, the potential for reduction increases as
the dimensionality of the model increases. When only few
responses are required however, it is better to design weight
window maps that target the responses of interest only. Our
primary interest focuses on two applications: using MC
models to generate the few-group cross-sections for core wide
calculations. In this case, thousands of assembly calculations
must be completed. Given the correlations between these
models, a huge reduction in the computational overhead may
be possible. The other application is core-wide MC models
where the flux is required everywhere in the phase space.

REACTOR CORE STUDY

A prototypical PWR full core model is developed with the
standard SCALE geometry utility. It is designed as a slight
variation to the benchmark problems presented in [10] and
[11]. The full core model consists of 193 fuel assemblies
(blue regions in Fig. 1) laid out in a 17×17 grid scheme and
surrounded by light water (red regions in Fig. 1). The cubic
volume of the whole active core is 365.6×365.6×335.3 cm3.
The cubic volume of each assembly is 21.505×21.505×335.28
cm3. Two types of fuel assemblies are modeled (blue regions):
a UO2 fuel assembly and a UO2-Gd2O3 fuel assembly. The
loading pattern of the full core is shown in the Fig. 1. Each
assembly consists of a 17×17 grid of pin cells with each pin
cell measuring 1.265×1.265 cm in the X-Y plane.

The singular values of the covariance matrix are shown in
Fig. 2. A cutoff of r=12 (red horizontal line) is selected such
that the error in Eqn. (4) does not exceed the desired statistical
uncertainties for the responses.

Fig. 1. X-Y View of the active core model with details
assembly described on the side.
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Fig. 2. Covariance Matrix Singular Values.

To compare the FW-CADIS and GP approach, a simple
metric is employed which described the relative reduction in
standard deviation defined as follows:

ε =
σFW-CADIS − σGP

σFW-CADIS
× 100 (6)

No figure of merit comparisons were done in this study,
as MC calculations dominated the total computational time
(MC computer time in the order of hours, versus deterministic
time in the order of seconds). In the future, a more complete
comparison based on figure of merit type metric to help
compare the various approaches. This follows as future work
will focus on eigenvalue problem, where deterministic models
are expected to take more time especially for high dimensional
problems.

Results in Fig. 3 show that the standard deviations in
GP method are reduced on the average by a factor two as
compared to the FW-CADIS method. This indicates the
potential of GP approach to reduce the variance globally by
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Fig. 3. FW-CADIS vs. GP.

taking advantage of the correlations between the statistical
uncertainties of the responses.

Note that the process we employed here is the simplest
approach to taking advantage of responses correlation. In
effect, the GP approach has reduced the number of original
responses to r pseudo responses which have been reduced
separately using adjoint-based weight windows. Other clever
approaches could be attempted. For example, a FW-CADIS
type approach could be employed to combine the pseudo-
responses by scaling each pseudo response by an appropriately
selected pseudo flux. Another approach is to employ a
subspace approach to randomly combine the pseudo responses
[12]. One more approach may combine the pseudo responses
by scaling each one based on its associated singular values. All
these approaches have the potential of optimizing the behavior
of this approach.

CONCLUSIONS

A new approach based on Gaussian Process theory
for global variance reduction is presented and the results
compared to the FW-CADIS method. GP method takes
advantage of the correlations between the variances of the
various responses which are described by a covariance matrix.
Deterministic calculations are employed to construct an
estimate of the covariance matrix by randomly sampling cross-
sections.

A full core model is implemented and analyzed in the
current study. A significant rank reduction is observed for the
covariance matrix, implying that only few adjoint evaluations
are needed to perform global variance reduction.

Current work has focused on fixed-source problem only.
The ultimate goal of our work is the application of global
variance reduction to eigenvalue problems which represents
the focus of ongoing efforts.

Finally, future work will focus on optimizing the GP
approach by hybridizing it with FW-CADIS and/or subspace
approach.
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