Lattice and spin dynamics in bcc Fe, 10 at. % Be

P. Zhao, J. Cullen, and M. Wuttig
Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742-2115

H. J. Kang and J. W. Lynn
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8562

T. A. Lograsso
Ames Laboratory, Ames, Iowa 50011-3020

O. Moze
CNR-INFM S3 National Research Centre, Dipartimento di Fisica, Università di Modena e Reggio Emilia, Modena, 41100, Italy

(Submitted on 21 January 2006; published online 17 April 2006)

Body centered cubic Fe1−xBe1 alloys are known to display an enhanced tetragonal magnetostriction compared to Fe. In order to characterize the enhanced magnetoelasticity observed in this alloy system, we present detailed inelastic neutron scattering measurements of the phonon dispersion relations of a single crystal of bcc Fe, 10 at. % Be along the high symmetry directions [100], [110], and [111] room temperature. We observe in particular that the frequency of transverse phonons propagating along the [110] direction with a [110] polarization at the zone boundary is reduced by 10% with respect to bcc Fe (the corresponding elastic shear constant c′ = 280 meV/Å2 associated with this mode is approximately 70% that of pure Fe). The dispersion of spin waves has also been determined for energy transfers up to 40 meV and is found to follow the isotropic dispersion relation

\[E(q) = Dq^2 \]

with

\[D = 200 \text{ meV/Å}^2 \]

for Fe,

\[E(q) = Dq^2 \]

with

\[D = 280 \text{ meV/Å}^2 \]

The dispersion of the magnon modes for energy transfers of up to 40 meV was also measured along these three high symmetry directions using constant-

INTRODUCTION

Recent investigations of the magnetoelastic properties of the alloy systems Fe–Ga,1,2 Fe–Al,3 and Fe–Be,4 demonstrate a considerable enhancement of the tetragonal magnetostriction constant \(\lambda_{100} \), with respect to Fe (body centered cubic structure). At room temperature, for example, an alloy of Fe89Be11 displays a sixfold increase in \(\lambda_{100} \) as compared to Fe.5 Correspondingly, the elastic constants such as \(c_{11} \), \(c_{12} \) and \(c' = \frac{1}{2}(c_{11} - c_{12}) \) are also observed to undergo significant variations. Such an extraordinary magnetoelastic behavior clearly highlights the potential technical applications of the aforementioned alloys. From the microscopic point of view, a complete characterization of the lattice and spin dynamics in these systems is highly desirable, as this allows for a realistic modeling of the atomic and magnetic interactions which may give rise to the magnetoelastic behavior. Reported here is an inelastic neutron scattering investigation of the phonon and magnon dispersion relations for a single crystal alloy of Fe90Be10 at room temperature. We observe a softening of the transverse [\(\xi\xi0 \)] phonon mode with a [110] polarization and a reduction of approximately 25%–30% in the value of the spin wave stiffness constant \(D \) reported for pure iron.5–7

EXPERIMENT

A large cylindrical single crystal with a nominal composition of Fe90Be10 (approximately 1 cm in diameter and 3 cm in length) was prepared by Bridgman growth of an ingot of Fe (99.999% purity) and Be (99.9% purity). Details concerning the crystal growth of the Fe rich FeBe alloy system are outlined in Ref. 4. Room temperature inelastic neutron scattering measurements were performed on the thermal triple axis spectrometers BT2 and BT7 located at the NIST Center for Neutron Research, Gaithersburg, Maryland. A fixed final neutron energy of 14.7 meV was utilized for both spectrometers. For measurements of the phonon modes, the crystal was oriented in both the [110] and [010] scattering planes, giving access to all the longitudinal and transverse modes along the three high symmetry directions [\(\xi00 \)], [\(\xi\xi0 \)], and [\(\xi\xi\xi \)] with \(\xi \) as the reduced wave vector in units of \(2\pi/a \), where \(a \) is the cubic lattice constant. The neutron groups for the phonons were determined by constant-

RESULTS AND DISCUSSION

The room temperature phonon dispersion relations for pure iron have been determined in numerous neutron scattering studies.8–13 In this article, we compare our results for Fe90Be10 with the detailed and comprehensive data reported by Minkiewicz et al.8 and Klotz and Braden.13 The general trend in the dispersion behavior of both the longitudinal and acoustic modes is very similar to that observed for iron and, in addition, the velocities of sound waves obtained from the
initial slopes of the phonon dispersion curves are in overall broad agreement with those calculated from the elastic constants as determined by ultrasonic techniques for Fe$_{88.7}$Be$_{11.3}$. One notable difference is the energy of the transverse TA$_1$ mode with a propagation wave vector along [110] and a [110] polarization, at the zone boundary (N point). The neutron group associated with this mode is displayed in Fig. 1. The observed energy of this mode, at 17.5 meV, is approximately 92% of that reported for pure iron (Minkiewicz et al. report a value of 18.5 meV for this particular mode, while Klotz and Braden assign a value of just under 19 meV). A similar behavior for this particular mode has been recently observed in Fe$_{89.2}$Ga$_{10.8}$. Furthermore, for the FeGa system, the TA$_1$ mode is observed to undergo an ever increasing and spectacular softening with increasing Ga composition. Similarly, the TA$_2$ mode, with an associated (001) polarization, also appears to display a departure from that observed for iron, lying consistently at values greater than those for pure Fe as the zone boundary is approached. The room temperature phonon dispersion curves for Fe$_{90}$Be$_{10}$ along the [001] direction are displayed in Fig. 2, together with the data for pure iron, taken from Refs. 8 and 13.

The composition dependence of the room temperature Fe magnetic moment, in Bohr magnetons, for dilute FeBe alloys is reported to obey the following relationship:

$$\mu_{Fe} = 2.216 - 2.01x_{Be},$$

where x_{Be} is the fractional Be composition. For a composition of 10 at. % Be, the resulting magnetic moment per Fe atom is approximately 2 μ_B. It can thus be expected that the concomitant spin wave stiffness constant D (in units of meV Å2) is also reduced for dilute FeBe alloys. The conventional isotropic magnon dispersion relation for ferromagnets at small values of the magnon wave vector q is given by

$$E(q) = Dq^2.$$
isotropic magnon dispersion for small values of q, the available data were least squares fitted to Eq. (1) yielding a value of (210 ± 15) meVÅ2 for D. This value is a reduction of 25%–30% of the value of D determined for pure Fe. 5–7 This reduction in the spin wave stiffness constant is remarkably larger than that observed for corresponding concentrations of Fe–Si, 16 Fe–Ga, 17 and Fe–Al alloys.

Further measurements are presently underway in order to determine the temperature dependence of the spin wave stiffness constant for this particular alloy composition as well as measuring the magnon dispersion relationship to higher energies. Future work presently in progress will also aim to extend information on the phonon dispersion curves to alloys richer in beryllium and to correlate these with bulk elastic properties. The present results clearly show that a softening of the transverse [$\xi\langle 0 \rangle$] phonon mode with [$\langle 110 \rangle$] polarization is also apparently present in the Fe–Be system, akin to that also observed for Fe–Ga alloys which also display similar and remarkable behavior in their magnetoelastic properties.

ACKNOWLEDGMENTS

The Ames Laboratory is operated by Iowa State University for the U.S. Department of Energy (DOE) under Contract No. W-7405-ENG-82. This research was supported by the Office of Basic Energy Sciences, Materials Sciences Division of the U.S. DOE.