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ABSTRACT: Small-angle neutron scattering experiments were conducted on a series of off-critical binary
polymethylbutylene/polyethylbutylene (PMB/PEB) blends over a wide range of blend compositions,
component molecular masses, temperatures, and pressures. The blends become more immiscible with
either decreasing temperature or increasing pressure. A simple extension of the Flory-Huggins theory
that accounts for finite volume changes of mixing (∆V) is presented. Our extension demonstrates the
validity of the usual mean-field theory of scattering from polymer mixtures based on the random phase
approximation (RPA) at elevated pressures. We use this framework to analyze the temperature and
pressure dependence of the small-angle neutron scattering profiles obtained from binary PMB/PEB blends.
We propose that the volume change of mixing is a linear response to the repulsive interactions between
monomers. We demonstrate that off-critical PMB/PEB blends can be undercooled or superpressurized
deep into the metastable two-phase region (e.g., up to 50 °C undercooling) without detectable signs of
phase separation. The ø parameters and the statistical segment lengths obtained by fitting the data
obtained in the metastable region are within experimental error of those determined from stable, single-
phase PMB/PEB blends well-removed from a phase boundary. This indicates that the concentration
fluctuations in the metastable region of the phase diagram have a mean-field character similar to those
in stable, single-phase blends that have been extensively characterized by the RPA-based theory.

Introduction
There is continuing interest in the effect of pressure

on the thermodynamics of polymer blends and block
copolymers.1-15 Typical experimental results that have
been obtained are shown in Figure 1, where we show a
schematic phase diagram for a binary polymer blend in
temperature-composition (T-φ1) space (φ1 is the vol-
ume fraction of one of the components). It has been
found that changing the system pressure, say from P1
to P2, results in a shift of the phase boundary as shown
in Figure 1. Two kinds of experiments have been used
to demonstrate this. In the first type of experiment, a
system in the homogeneous part of the phase diagram
(e.g., point I in Figure 1) is studied as a function of
pressure at constant temperature and composition. As
the phase boundary approaches point I with changing
pressure, the concentration fluctuations increase in
magnitude. This can be detected using either small-
angle neutron scattering (SANS) or small-angle X-ray
scattering (SAXS). We refer to this kind of experiment
as a type I experiment. In the second kind of experi-
ment, the location of the phase boundary of a particular
system is studied as a function of pressure. The depen-
dence of the cloud point of a blend can be detected by
light scattering under pressure. On the other hand, the
order-disorder transition temperature of a block co-
polymer can be detected by depolarized light scattering
under pressure.15 Such experiments yield information
about the dependence of the phase transition temper-
ature (Tp) on P. We refer to this kind of experiment as
a type II experiment.1,3,5,9,12,14,15

The interpretation of scattering data from polymer
mixtures was facilitated by the pioneering work of de

Gennes, who developed the random phase approxima-
tion (RPA).16 The original derivation was restricted to
binary polymer blends, and it was based on the postu-
late that concentration fluctuations are driven by mean-
field potentials. The local concentrations of the two
components were assumed to be coupled due to the
incompressibility of the mixture [φ1(r) + φ2(r) ) 1 at
all locations r in the blend], and this led to a self-
consistent analysis for determining the potentials. The
final result was a simple expression for the scattering
intensity from single-phase polymer blends in terms of
the statistical segment lengths of the polymer chains
(scaling of chain radius of gyration with molecular mass)
and the Flory-Huggins interaction parameter ø, which,
in theory, is related to the energy of interaction between
monomers. All other nonidealities of mixing, including
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Figure 1. A schematic phase diagram for polymer blends at
pressures P1 and P2 in T versus φ1 format, where T is
temperature and φ1 is the volume fraction of component 1. The
solid curve is the binodal curve, and the dashed curve is the
spinodal curve. In a type I experiment, a single-phase blend
(e.g., point I) is studied as a function of pressure. In a type II
experiment the phase transition temperature (Tp) is studied
as a function of pressure.
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volume changes of mixing (∆V), were assumed to be
negligible. Subsequent work by Leibler and others
enables the application of the RPA-based framework to
any multicomponent polymer mixture, regardless of the
number of components and their architectural complex-
ity.17-20

Some researchers have used the RPA-based equations
to analyze pressure-dependent scattering data from type
I experiments on blends and block copolymers. In all
cases,1,3,4,6-8,10,11 the data from homogeneous, one-phase
systems are consistent with the RPA if ø and the
statistical segment lengths are assumed to be pressure
dependent. This is in addition to the usual temperature
dependence of these parameters.21-23 Other groups have
questioned the applicability of the RPA to type I
experiments because of the incompressibility assump-
tion, and different modifications of the original RPA
have been proposed.1,4,8

The data obtained in type II experiments are invari-
ably analyzed by using the Clausius-Clayperon equa-
tion,24

where ∆Vp and ∆Hp are the volume and enthalpy
changes associated with the phase transition.

Janssen et al.1 obtained ø in deuterated polystyrene/
poly(vinyl methyl ether) (dPS/PVME) blends by the
application of the RPA to SANS data. They also esti-
mated ø from PVT measurements on the pure compo-
nents and the blends, using the Flory-Orwoll-Vrij
equation of state. The ø parameters, determined from
the two techniques, were in reasonable agreement.
Hammouda et al. studied the pressure dependence of ø
in dPS/poly(butyl methacrylate) (dPS/PBMA) and dPS/
PVME blends.7,8 In ref 8 they implemented a scheme
for analyzing the SANS data, using a model that
combines a compressible RPA model with one that
accounts for the presence of free volume.25 In this
approach, the interpolymer interactions are not de-
scribed by a ø parameter. Hajduk et al. studied the
pressure dependence of ø in disordered polystyrene-
block-polyisoprene (PS-PI) copolymer melts.4 They used
a modified RPA-based approach proposed by Tang and
Freed26 to estimate ø as a function of T and P. Using
the idea that øN (where N is the number of monomers
per chain) at the order-disorder transition must be a
constant, they estimated that dTp/dP to be 10 °C/kbar
for their system. Explicit measurements of dTp/dP by
Hajduk et al.5 indicated that dTp/dP ) 20 °C/kbar. To
our knowledge, this work represents the first attempt
to reconcile the results of type I and type II experiments
in polymeric mixtures. Rabeony et al.6 studied a variety
of polyolefin blends. They found that the temperature
and pressure dependence of the ø parameter for differ-
ent systems collapsed onto a master curve when ø was
plotted as a function of density. The density of the
mixtures were computed from the known densities of
the pure components, assuming ∆V ) 0. They thus
proposed that the pressure dependence of ø is due to
the pressure dependence of the interaction energy
between the monomers.

It is clear that despite considerable previous efforts,1,4-8

several questions about the interpretation of pressure-
dependent scattering from polymer mixtures remain
unresolved:

(1) Experimentalists seldom question the applicability
of the RPA at atmospheric pressure. Why then have

some experimentalists not used the RPA to analyze data
obtained at elevated pressures? Does the applicability
of the RPA decrease with increasing pressure?

(2) What is the microscopic origin of the pressure
dependence of the measured ø parameter?

(3) How can one reconcile the results of the RPA-based
analysis of type I experiments wherein ∆V is assumed
to be zero and the results of the Clausius-Clayperon
analysis of type II experiments which requires ∆V to
be finite for a measurable pressure effect?

(4) Is eq 1, the one-component Clausius-Clayperon
equation, a good approximation for phase transitions
in polymer blends and block copolymers?

Our objective is to provide answers to these questions.
We propose a simple extension of the Flory-Huggins
theory that accounts for finite ∆V and demonstrates the
validity of the RPA at elevated pressures. An important
conclusion is that the pressure dependence of SANS (or
SAXS) data in type I experiments must arise from finite
∆V. We conducted experiments to explore the validity
of our approach and the limits of applicability of the
RPA. A series of binary polymethylbutylene/polyethyl-
butylene (PMB/PEB) blends were studied by SANS over
a wide range of blend compositions, component molec-
ular masses, temperatures, and pressures.

In addition to answering the questions raised in the
previous paragraphs, we also consider whether RPA can
be applied to metastable systems. It is clear that the
RPA applies to stable, one-phase systems, i.e., systems
located outside the binodal curve at a given T and P
(see Figure 1). It is also clear that the RPA is not
applicable to unstable systems located within the spin-
odal curve at a given T and P (see Figure 1). In the case
of unstable systems, the blend structure is time-depend-
ent, and the scattering intensity profiles computed using
the RPA contain an unphysical singularity (a pole) at
finite scattering vector q. However in the metastable
region, i.e., in the region between the binodal and spin-
odal curves (see Figure 1), nucleation barriers can sta-
bilize single-phase systems for some time, and there are
no singularities in the RPA-based scattering profiles.
During the course of this study we found that the PMB/
PEB blends remain homogeneous for many hours in the
metastable region. Whether or not the RPA can be ap-
plied to nonevolving, metastable, single-phase polymer
blends is an open question that we address in this paper.

Theoretical Model
We begin with the standard Flory-Huggins expres-

sion for the Gibbs energy density change of mixing, ∆G,
for a binary mixture of two polymers labeled 1 and
2,27-29

where k is the Boltzmann constant, φi is the volume
fraction of component i in the mixture, Ni is the number
of monomers per chain of component i, vi is the volume
of each monomer of component i, ø is the Flory-Huggins
interaction parameter, and v0 is an arbitrary reference
volume which we set equal to 100 Å3. The first term in
the right-hand side (RHS) of eq 2 is equal to -∆S/k
where ∆S is the entropy change of mixing. The second
term in the RHS of eq 2 is equal to ∆H/kT where ∆H is
the enthalpy change of mixing.

In most experimental papers, ø is reported as a
function of either 1/T or P.1,3,4,6,7,10,11,19-23 We therefore

∆G
kT

) [φ1ln φ1

v1N1
+

φ2ln φ2

v2N2
] + ø

v0
φ1φ2 (2)

dTp/dP ) T∆Vp/∆Hp (1)
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consider the generalized Gibbs-Helmholtz relation for
the dependence of ∆G/kT on 1/T and P, at constant
composition24,30,31

Any equation for the temperature and pressure
dependence of ∆G such as eq 2 must comply with eq 3.
It is also clear from eqs 2 and 3 that if ∆G (or,
equivalently, ø) depends on P, then ∆V must be finite.
On the other hand, the original Flory-Huggins equation
(eq 2) was derived under the assumption that ∆V ) 0
and ∆H ) ∆U, where ∆U is the internal energy change
of mixing. The ø parameter for a blend in perfect
compliance with the Flory-Huggins theory would be
independent of P.

We propose a simple extension of the Flory-Huggins
theory that accounts for finite ∆V. This extension is
similar to that used to account for the pressure depen-
dence of thermodynamics of regular solutions.31 We
assume that ∆V is given by the expression

Our expression for ∆V is analogous to the Flory-
Huggins expression for ∆U:

In eqs 4 and 5, v and u for a pair of polymers are
assumed to be independent of blend composition and
component molecular mass. At a given T and P, ∆H
()∆U + P∆V) is given by

It is clear that eq 1 can be used to determine the T and
P dependence of ∆G if we redefine ø as

We assume that functions u and v are dependent only
on temperature. Equation 7 thus predicts that ø at a
given temperature is a linear function of pressure. This
prediction is consistent with a large fraction of the
experimental data on polymer blends.1,4,6,7,10,11 In the
limit P f 0, ø ≡ u.

The boundary between the single-phase and two-
phase regions of the phase diagram of binary blends that
obey the Flory-Huggins theorysthe binodal curvesis
obtained by solving the following equations:

where φ1
I and φ1

II are the volume fractions of component

1 in the coexisting phases at the temperature and
pressure of interest. Equations 8a and 8b are the
Clausius-Clayperon equations for binary polymer blends.
The spinodal curve (the limit of instability of the one-
phase system), for Flory-Huggins blends, is given by

The above results, when combined with the two-step
derivation of the RPA equation given by Higgins and
Benoit,32 demonstrate the consistency of the RPA at any
temperature and pressure. In the first step, Higgins and
Benoit show that the scattering intensity for a blend of
two noninteracting polymers labeled 1 and 2 (i.e., ø )
0) is given by

where the partial structure factors Sii
0 are given by

Pi(q) is the Debye function of the i chains,

where x ) q2Rg,i
2, Rg,i ) Nili

2/6, and li is the statistical
segment length of polymer i. It is obvious that eqs 10-
12 apply at any temperature and pressure. The only
parameters in these equations that depend on T and P
are li and vi;33 both parameters are only weakly depend-
ent on T and P. The T and P dependence of the monomer
volumes, vi, is obtained from PVT measurements on the
pure homopolymers. For the polymers used in this study
(PMB and PEB), the PVT results can be summarized
by eq 13

where vi,ref is the monomer volume at a reference
temperature and pressure (Ti,ref and Pi,ref, respectively)
and constants Ri, âi, and γi are experimentally deter-
mined parameters.34 The T and P dependence of li is
obtained from SANS experiments, as described in the
next section.

In binary polymer mixtures, it has been shown the
scattered intensity due to density fluctuations is neg-
ligible when compared to the scattered intensity due to
concentration fluctuations.32,35-37 In this case, the scat-
tering intensity in the forward direction is given by

In the second step of the derivation, Higgins and Benoit
correct eq 10 to comply with eq 14. Combining eqs 2,
10, and 14 yields the familiar RPA result,

Note that in our approach ø is redefined to include ∆V

∂
2(∆G/kT)

∂φ1
2

) ( 1
N1v1φ1

+ 1
N2v2φ2

) - 2
ø(T,P)

v0
) 0 (9)

I(q) ) (b1

v1
-

b2

v2
)2( 1

S11
0 (q)

+ 1
S22

0 (q))
-1

(10)

Sii
0(q) ) NiviφiPi(q) (i ) 1, 2) (11)

Pi(q) ) 2
x2

(e-x + x - 1) (12)

vi ) vi,ref exp [Ri(T - Ti,ref) + (âi - γiT)(P - Pi,ref)]
(13)

I(qf0) ) I0 ) (b1

v1
-

b2

v2)2(∂2(∆G/kT)

∂φ1
2 )-1

(14)

I(q) ) (b1

v1
-

b2

v2
)2( 1

S11
0 (q)

+ 1
S22

0 (q)
- 2ø

v0
)-1

(15)

d(∆G
kT ) ) ∆H

k
d(1T) + ∆V

kT
dP (3)

∆V ) vφ1(1 - φ1)/v0 (4)

∆U
kT

) uφ1(1 - φ1)/v0 (5)

∆H
kT

) (u + Pv
kT)φ1(1 - φ1)/v0 (6)

ø(T,P) ) u(T) +
v(T)
kT

P (7)

ln(φ1
I

φ1
II) + (φ1

II - φ1
I )(1 - N1v1/N2v2) +

ø(T,P)N1v1

v0
×

((1 - φ1
I )2 - (1 - φ1

II)2) ) 0 (8a)

ln(1 - φ1
I

1 - φ1
II) + (φ1

I - φ1
II)(1 - N2v2/N1v1) +

ø(T,P)N2v2

v0
((φ1

I )2 - (φ1
II)2) ) 0 (8b)
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contributions according to eq 7. Since eqs 2, 7, 10, and
14 are valid at any T and P, it follows that eq 15 is valid
at any T and P.

Equations 2, 7, 10, and 15 are the main results of this
section. These equations may be considered as a simple
extension of the mean-field theory of polymer blends
that is consistent with the generalized Gibbs-Helm-
holtz equation. The weak T and P dependence of ∆S
(which is due to the T and P dependence of the monomer
volumes, vi) makes our framework slightly inconsistent
with the generalized Gibbs-Helmholtz equation. The
inconsistency is not of practical significance if the
variation of ø with pressure is significantly larger than
the isothermal compressibility, i.e., |∂ln(ø)/∂P| . |∂ln-
(vi)/∂P|. Blends wherein the variation of ø with pressure
is similar in magnitude to the isothermal compress-
ibility are in prefect agreement with the original Flory-
Huggins theory.11,35

A powerful feature of the RPA is that it can address
the thermodynamics of a diverse array of polymer
systems such as block copolymer melts and complex
multicomponent mixtures that are outside the realm of
the Flory-Huggins theory. Pressure-dependent SANS
data from such systems will be discussed in future
publications.

Experimental Section
Hydrogeneous and partially deuterated polymethylbutylene

(PMB) and polyethylbutylene (PEB) homopolymers were syn-
thesized and characterized using methods described in refs
38 and 39. The chemical formulas of the (majority) repeat units
in these polymers are given in Figure 2. These chemical
moieties also serve as definitions of monomer units for
purposes of theoretical computations. The characteristics of
the polymers used in this study are given in Table 1.
Hydrogenous polymers are referred to with a prefix h while
the deuterium-labeled polymer is referred to with a prefix d.
Binary blends of PMB and PEB were made by dissolving the
components in cyclohexane and drying to a constant weight
in a vacuum oven at 70 °C. The compositions of the blends
studied here are given in Table 2.

The PVT properties of PMB and PEB homopolymers were
measured by Krishnamoorti.34 We use his results to estimate
the temperature and the pressure dependence of the monomer
volume of each of the species using eq 13. The parameters to
be used in eq 13 for the polymers used in this study are given
in Table 3.

SANS experiments were conducted on the NG3 beamline
at the National Institute of Standards and Technology in
Gaithersburg, MD. The SANS data reported here were ob-
tained in three separate runs, each lasting 3-4 days. The
samples were held in a thermostated steel pressure chamber

between two sapphire windows separated by a 1.5 mm Teflon
O-ring. (After assembly of the pressure cell, the O-ring is
squeezed to a thickness of approximately 1 mm.40) The samples
were made by placing the O-ring on top of one of the sapphire
windows and adding the required amount of polymer (ca. 0.16
g) in the region enclosed by the O-ring. The polymer, O-ring,
and window were then placed in a vacuum oven at 80 °C for
ca. 8 h. Heating caused the polymer sample to flow and occupy
the space provided by the O-ring. The assembly was then
carefully placed in the pressure cell and capped with the
second sapphire window. The pressure cell was connected to
a reservoir of silicone oil, which served as the pressurizing
fluid. A computer-driven piston assembly was used to control
the sample pressure. A more detailed description of the
pressure cell is given in ref 9.

The SANS data from blends B1 and B2 were obtained using
the following configuration: neutron wavelength, λ ) 6.0 Å,
wavelength spread, ∆λ/λ ) 0.15, sample-to-detector distance
) 9 m, sample aperture ) 0.635 cm, source-to-sample distance
) 8.57 m, and source size ) 5.0 cm. The configuration used
for blends B3 and B4 was slightly different from the config-
uration for the blends B1 and B2: the sample-to-detector
distance ) 11 m, and the source-to-sample distance ) 10.12
m; all other settings were the same. A kinetic experiment was
performed on blend B3 using the following configuration:
neutron wavelength, λ ) 14.0 Å, wavelength spread, ∆λ/λ )
0.15, sample-to-detector distance ) 13.18 m, sample aperture
) 0.635 cm, source-to-sample distance ) 14.77 m, and source
size ) 5.0 cm. For the static measurements, the time for data
acquisition was 5-20 min, depending on the scattered inten-
sity. Data acquisition was started 5-10 min after the cell
temperature and pressure had equilibrated. The scattering
data were collected using a 128 × 128 pixel two-dimensional
detector, corrected for background scattering, empty cell
scattering, and detector sensitivity. All of the scattering
profiles were azimuthally symmetric. We thus report the
azimuthally averaged scattering intensity as a function of q
[q ) 4π sin(θ/2)/λ, θ is the scattering angle]. The raw data from
the static measurements were converted to absolute scattering
intensity, I(q), using methods and secondary standards de-
scribed ref 23. The data from the kinetic measurements were
not converted to absolute scattering intensity.

Estimates of errors in our measurements are provided in
the Appendix.

Experimental Results
Our first experiments on PMB/PEB blends were

conducted on blends B1 and B2 where the short PEB
chains were used. These blends were studied as a
function of increasing temperature from 29 to 103 °C.
At each temperature, the pressure was increased from
0.01 to 1 kbar. On the basis of previous studies,23 we
were sure that these blends were in the single-phase
region at atmospheric temperature and pressure. We
did not anticipate phase separation in these blends and
therefore did not investigate the effect of thermal and
compression history. Typical data are shown in Figure
3 where we show the pressure dependence of I(q)

Figure 2. Chemical structures of the monomer units for the
polymers used in this study.

Table 1. Characteristics of Polymers

polymer
density
(g/cm3)

av no. of D
atoms per 6 C

atoms
mol mass

(g/mol)
polydispersity

index

dPMB 0.9300 7.33 1.8 × 105 1.07
hPEB1 0.8629 0 4.8 × 104 1.07
hPEB2 0.8628 0 2.2 × 105 1.08

Table 2. Composition of Samples Studied

components

sample A B φA
a

B1 dPMB hPEB1 0.414
B2 dPMB hPEB1 0.203
B3 dPMB hPEB2 0.161
B4 dPMB hPEB2 0.099

a Volume fraction of component A is computed at 30 °C and
atmospheric pressure, based on weight fraction of the components
and measured densities of the components.33 The magnitudes of
∆V, and the mismatch in the thermal expansion coefficients and
the isothermal compressibilities of the components, are too small
to have a significant effect on φA.
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obtained at 29 °C (Figure 3a) and 103 °C (Figure 3b)
from sample B2. It is evident that pressure has a larger
effect on I(q) at the low temperature (29 °C) than at the
high temperature (103 °C).

The experimental protocol used to study blends B3
and B4 was quite different from that used for blends
B1 and B2, because we anticipated that these blends
were in the two-phase region at atmospheric tempera-
ture and pressure. Note that the long PEB chains were
used to make these blends. We therefore studied blends
B3 and B4 as a function of thermal history; i.e., they
were studied as a function of increasing as well as
decreasing temperature. As was the case with blends
B1 and B2, at each temperature, the blends were
studied as a function of increasing pressure. In Figure
4 we show the temperature dependence of I(q) at P )
0.52 kbar for blends B3 (Figure 4a) and B4 (Figure 4b).
Both sets of data were obtained during the cooling run
after the sample was heated to 201 °C for blend B3 and
167 °C for blend B4. In Figure 5a, we show the low-q
scattering data from blend B3 at P ) 0.52 kbar (Figure
4a) in the Zimm format: 1/I versus q2. The lines in
Figure 5a are least-squares linear fits through the data.
Zimm plots of the low-q data from blend B4 at P ) 0.52
kbar are shown in Figure 5b. We use the Zimm plots to
extrapolate the I(q) data and estimate I0, the scattering
intensity as q f 0.

We obtained I0 by this procedure for both blends B3
and B4 at each temperature and pressure, during both

heating and cooling runs. In Figure 6a we show the
temperature dependence of 1/I0 of B3 at P ) 0.01 kbar
(which is essentially atmospheric pressure). During the
heating run (circles in Figure 6a), the sample was
heated from room temperature to 201 °C. A sharp
discontinuity in the temperature dependence of I0 is
seen in the heating run at T ) 127 °C. In contrast, no
discontinuity is seen during the cooling run, which was
conducted in two segments. First, the sample was cooled
from 201 °C after completion of the heating run to 109
°C and studied as a function of decreasing temperature
until T ) 42 °C (triangles). In the second segment, the
sample was reheated to 91 °C and studied as a function
of decreasing temperature from T ) 78 to 60 °C
(squares).

The sharp discontinuity in the heating data at 127
°C in Figure 6a is an indication that blend B3 had
undergone a phase transition. In fact, the values of I0
obtained below 100 °C, during the heating run, are
negative. This is an unambiguous signature of a two-
phase system. The true value of I0 must be positive; the
negative values of I0 indicate the presence of large
domains that are outside the instrument resolution (q
range). It is perhaps interesting to note that blend B3
was optically transparent when it was loaded into the
pressure cell at 23 °C, despite the presence of the large
domains. This is undoubtedly due to the weak optical
contrast between the domains and the matrix. On the
other hand, the neutron contrast between the domains

Table 3. Temperature and Pressure Dependence of Monomer Volume, vi

component Tref (K) Pref (kbar) vref (Å3) R (K-1) â (kbar-1) γ (K-1 kbar-1)

PMB 300.15 1.01 × 10-3 136.2 6.8 × 10-4 -6.40 × 10-2 4.03 × 10-4

PEB 300.15 1.01 × 10-3 162.0 7.1 × 10-4 -7.12 × 10-2 4.22 × 10-4

Figure 3. SANS intensity versus the scattering vector (I
versus q) from blend B2 at (a) 29 °C and (b) 103 °C, at selected
pressures.

Figure 4. SANS intensity versus the scattering vector (I
versus q) at a pressure of 0.52 kbar for (a) blend B3 and (b)
blend B4, at selected temperatures.
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and the matrix is considerably larger due to deuteration
of the PMB chains. Thus, the two-phase state of blend
B3 at room temperature is only evident in a neutron
scattering experiment. In Figure 6b we show 1/I0 versus
T data from sample B3 at the highest pressure (P )
0.97 kbar). The P ) 0.97 kbar data (Figure 6b) are
qualitatively similar to the P ) 0.01 kbar data (Figure
6a). In both cases we can identify two branches for the
1/I0 versus T curves, a heating branch and a cooling
branch.

It is tempting to think of the junction point of the
heating and cooling branches in Figure 6a,b as the
location of the binodal. It undoubtedly indicates the
transition from a two-phase state to a single-phase state
upon heating. However, caution must be exercised, due
to the long chain character of the components, and the
resulting potential of observing nonequilibrium effects.
Molecular motion in blends B3 and B4 is extremely
slow. On the basis of viscoelastic properties,42,43 we
estimate that the longest molecular relaxation times for
the PMB and PEB chains in blends B3 and B4 are 10
and 0.6 s, respectively. The kinetics of dissolution of
macrophases composed of such sluggish molecules as a
function of the blend location in the phase diagram is
not known. We may require considerable superheating
to dissolve the macrophases on the experimental time
scale (order of minutes). From our previous publications,
it is evident that increasing pressure on PMB/PEB
systems increases ø; i.e., it increases the incompat-
ibility.11 This indicates that the binodal temperature at
P ) 0.97 kbar should be higher than that at 0.01 kbar.
However, we know that the phase separation kinetics
in these PMB/PEB blends at low quench depths is very

slow.12 Thus, once the system has been brought into the
single-phase region, it remains single phase even after
it has been superpressurized (or undercooled) into the
two-phase region. We thus conclude that the junction
point of the heating and cooling branches at P ) 0.01
kbar (127 °C, see Figure 6a) is an upper limit for the
binodal temperature at P ) 0.01 kbar. On the other
hand, there is no significance to the junction point of
the heating and cooling branches at P ) 0.97 kbar
(Figure 6b) due to nonequilibrium effects.

The dependence of 1/I0 on T for blend B4 at P ) 0.01
kbar is shown in Figure 7a while that at P ) 1.00 kbar
is shown in Figure 7b. Here we see no effect of thermal
and compression history; the 1/I0 versus T data for the
heating and cooling runs are within the noise level of
the measurements. We are thus not able to obtain any
estimate of the location of the binodal in blend B4.

We are now interested in applying the RPA-based
analysis to the I(q) data obtained from our samples.
Since the RPA-based analysis applies only to single-
phase systems, we need to determine the T,P range over
which samples B1 through B4 are single phase. This is
particularly important for samples B3 and B4, which
were designed to be located near the phase boundary.
However, hysteresis and slow kinetics prevented us
from obtaining information about the binodal curves,
except for the conclusion that 127 °C is an upper limit
for the binodal temperature of blend B3 at atmospheric
pressure. Our only remaining alternative is to locate the
phase boundary, using eq 8. However, we have not yet
determined ø(T,P), so we cannot use eq 8. We thus have

Figure 5. Inverse of the SANS intensity, 1/I, versus q2 at
various temperatures, for (a) blend B3 and (b) blend B4, at a
constant pressure of 0.52 kbar. The solid lines are least-
squares linear fits through the data.

Figure 6. Extrapolated inverse SANS intensity as q f 0, 1/I0
versus temperature T for blend B3 at (a) 0.01 kbar and (b)
0.97 kbar.

7982 Lefebvre et al. Macromolecules, Vol. 33, No. 21, 2000



a dilemma. We know that we can use the RPA for
systems in the single-phase region to obtain ø(T,P). We
also know that we cannot use the RPA for systems
inside the spinodal. We are not sure whether the RPA
can be applied to the data in the metastable region. Our
problem, however, is that without knowing ø(T,P) we
do not know where the boundaries between these
regions lie.

Our solution to this dilemma was to simply analyze
all of the available data using the RPA-based equations
and examine the validity of the analysis after this was
done. The procedure used for analyzing the data was
identical to that used in our previous publications.22,23,39

In Figure 8a, we show the pressure dependence of I(q)
obtained from sample B1 at 66 °C. The sample is well
within the one-phase region of the phase diagram at all
pressures. The curves through the data represent least-
squares RPA fits (eq 15) with ø and li as adjustable
parameters. All other parameters are obtained from
independent experiments, and a summary of these
parameters is given in Table 4. From our previous
studies,39 we know the statistical segments lengths for
PMB and PEB chains at atmospheric temperature and
pressure (li,ref). The values of li of both PMB and PEB
were changed by a constant factor R, relative to li,ref,

to obtain the best fit. It is appropriate to think of R as
an average expansion factor for the two chains.

The theoretical curves in Figure 8a are thus two-
parameter fits with ø and R as adjustable parameters.
It is evident that there is good agreement between
theory and experimental data from sample B1. The

procedure described above for sample B1 was repeated
on the data obtained from all four samples. In the case
of B3 and B4 we used the data obtained during the
cooling runs, after the sample had been heated into the
one phase region. In Figure 8b, we show the comparison
between theory and experiment for sample B3 at
selected temperatures and P ) 0.86 kbar. On the basis
of our previous estimates of ø,23 we expect B3 to be well
inside the two-phase region at these values of T and P.

Figure 7. Extrapolated inverse SANS intensity as q f 0, 1/I0
versus temperature T for blend B4 at (a) 0.01 kbar and (b)
1.00 kbar.

li(T,P) ) Rli,ref (i ) 1, 2) (16)

Figure 8. SANS intensity, I, versus q, for (a) blend B1 at
various pressures at a constant temperature of 66 °C and (b)
blend B3 at selected temperatures with a constant pressure
of 0.86 kbar. (c) The data in (b) is shown in the 1/I versus q2

format. The divergence of I(q) at low q is due to the proximity
of B3 to the spinodal. Blend B1 is located in the single-phase
region, whereas blend B3 is located in the metastable two-
phase region. The solid lines through the data in (a), (b), and
(c) represent least-squares RPA fits.

Table 4. Parameters Used for RPA Calculations

parameter dPMB hPEB1 hPEB2

Ni 2465 525 2630
vi (Å3/monomer) 136.2 162.0 162.0
li,ref (Å) 8.26 7.93 7.93
bi (Å) 5.95 × 10-4 -4.98 × 10-5 -4.98 × 10-5
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Despite this, the RPA works rather well; the quality of
the fits obtained from B3 at 0.86 kbar (Figure 8b) is
similar to that obtained from B1 at 66 °C (Figure 8a).
Because of the proximity of blend B3 to the spinodal,
the extrapolated intensity as q f 0 is very large. This
is best seen in a Zimm plot where we plot 1/I versus q2

(Figure 8c). At 54 °C, I(qf0) is 104 cm-1 and the sample
is estimated to be 4 °C from the spinodal.

In Figure 9a we show the results of the fitting
procedure for all of the samples at P ) 0.01 kbar in the
form of ø versus 1/T. The pluses shown in Figure 9a
represent previously published data23 for the tempera-
ture dependence of ø at atmospheric pressure between
dPMB and hPEB measured on a critical mixture with
a relatively low molecular mass hPEB. The temperature
dependence of ø that we have obtained from samples
B1 through B4 is in good agreement with previously
published data at atmospheric pressure. Just as we had
done in our previous studies on PMB/PEB blends,10,23

we assumed that ø was a quadratic function of 1/T

The solid curve in Figure 9a represents the best least-

squares fit through the data, which gives us the
parameters A, B, and C. Knowing ø as a function of T
enables us to determine the phase diagram for any of
the dPMB/hPEB blends at P ) 0.01 kbar. We found, as
we had expected, that blends B1 and B2 are single-
phase in the entire temperature window at 0.01 kbar.
In Figure 9b, we thus show the phase diagram for
dPMB/hPEB2 blends (B3 and B4). The vertical dashed
lines represent the range of temperatures at which ø
values were reported in Figure 9a. Note that a substan-
tial portion of the measurements on samples B3 and
B4 were conducted in the metastable region of the phase
diagram. The filled symbols in Figure 9a represent the
data taken from stable, single-phase systems, while the
open symbols represent the data taken from metastable
systems. The fact that ø measurements from the meta-
stable region from samples B3 and B4 agree quantita-
tively with those obtained from B1 and B2 in the single-
phase region indicates that the RPA equations provide
an accurate description of the concentration fluctuations
in metastable polymer blends. To our knowledge, these
are the first experimental tests of the applicability of
the RPA to metastable systems. The subject of meta-
stable liquids is of considerable current interest.44

Binary PMB/PEB blends may be model systems for
studying metastability, due to the ease with which
metastable states can be obtained and the applicability
of a mean field theory in this regime.

In Figure 10a we show typical ø versus 1/T data
obtained at elevated pressures (P ) 0.86 kbar). The data
are qualitatively similar to those obtained at P ) 0.01
kbar (Figure 9a). We fit the data in Figure 10a using
eq 17 to get ø(T) at P ) 0.86 kbar and then use eqs 8
and 9 to compute the phase diagram for dPMB/hPEB2
blends at P ) 0.86 kbar. The results are shown in Figure
10b. As expected, we find that a significant fraction of
dPMB/hPEB2 data (samples B3 and B4) was obtained
from metastable, single-phase samples. It is evident that
the ø parameters obtained from stable and metastable
single-phase samples are in good agreement at atmo-
spheric (Figure 9a) as well as elevated (Figure 10a)
pressures.

We were able to compute the phase diagrams at all
of the pressures studied, using the same procedure that
was used to produce Figures 9b and 10b. In Figure 11a,
we show a temperature-pressure phase diagram for the
blend B3. The dashed lines in Figure 11a indicate the
locations of the calculated binodal and spinodal curves.
To obtain experimental confirmation of the blend B3
phase diagram, we conducted a two-part kinetic experi-
ment, described schematically by the arrows in Figure
11a. The first part is a phase separation experiment,
and the second part is a two-step dissolution experi-
ment.

In the phase separation experiment, sample B3 was
quenched from the one-phase region to 48 °C at 0.86
kbar (point A in Figure 11a). Point A is located deep in
the two-phase region and is, in fact, within the esti-
mated spinodal. Time zero for this part of the experi-
ment is when the sample reached 48 °C and 0.86 kbar.
The SANS profiles obtained after the quench showed
the classic scattering signatures for spinodal decomposi-
tion; the time dependence of the SANS profiles is shown
in Figure 11b. A scattering peak developed during the
early stages of phase separation. At later times, the
peak moved toward the beamstop due to coarsening
processes.

Figure 9. (a) Dependence of ø on 1/T at a pressure of 0.01
kbar. Diamonds, B1; triangles, B2; circles, B3; and squares,
B4. The filled symbols indicate results from blends in the one-
phase region. The unfilled symbols indicate results from blends
in the metastable two-phase region. The pluses represent
previously published data for a dPMB/hPEB blend taken at
atmospheric pressure.23 The error bar shows the largest error
in ø. The curve is the least-squares quadratic fit through the
present data. At P ) 0.01 kbar, ø is approximately equal to u.
(b) Calculated phase diagram for blends B3 and B4 at 0.01
kbar in T versus φdPMB format. The parameters used for the T
dependence of ø are A ) 0.002 53, B ) -1.929 K, and C )
446.01 K2. The solid curve is the binodal curve, and the thin
dashed curve is the spinodal curve. The thick vertical dashed
lines show the range at which ø values were determined for
samples B3 and B4.

ø ) A + B/T + C/T2 (17)
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After keeping the sample at point A for about 9 h,
the dissolution experiment was begun by heating the
sample at constant pressure to 91 °C (point B in Figure
11a). Note that point B is quite close to the binodal curve
but still within the two-phase region. Time zero for the
dissolution experiment is when the sample reached 91
°C at 0.86 kbar. We kept the sample at point B for 1 h,
and the SANS profiles obtained during the A f B step
of the dissolution experiment are shown in Figure 11c.
The SANS intensity did decrease slightly during the
early stages of the A f B step but then stopped
changing as shown in Figure 11c. After 1 h, the SANS
intensity was orders of magnitude larger than that
obtained from homogeneous blends, indicating that we
were not able to homogenize the blend at point B. This
result is consistent with the phase diagram in Figure
11a, which indicates that point B is located inside the
two-phase region. The second step of the dissolution
experiment (started at t ) 89 min) was to depressurize
and heat the blend to 0.01 kbar and 109 °C, which is
above the predicted binodal curve (point C in Figure
11c). The equilibration time for the pressure cell after
initiating a temperature change is considerable, and in
Figure 11c, we show the SANS profiles obtained after
the sample had equilibrated at point C which was about
1 h after the B f C step was initiated. The B f C step

resulted in a 2 orders of magnitude decrease in the
SANS intensity, and we obtained data characteristic of
single-phase samples (see Figure 11c).

It is evident that the kinetic data obtained during the
A f B f C quench confirm our phase diagram calcula-
tions that were based entirely on static SANS data.
Thus, 109 °C is our best experimental estimate of the
binodal temperature of blend B3 at atmospheric pres-
sure. Note that this is an upper bound because finite
superheating is required to dissolve the two-phase
structure in a finite amount of time. Our previous
estimate of the binodal temperature of blend B3 at
atmospheric pressure, based on 5 min experiments

Figure 10. (a) Dependence of ø on 1/T at a pressure of 0.86
kbar. Diamonds, B1; triangles, B2; circles, B3; squares, B4.
The filled symbols indicate results from blends in the one-
phase region. The unfilled symbols indicate results from blends
in the metastable two-phase region. The error bar shows the
largest error in ø. The curve is the least-squares quadratic fit
through the data. (b) The calculated phase diagram for blends
B3 and B4 at 0.01 kbar in T versus φdPMB format. The
parameters used for the T dependence of ø (eq 15) are A )
0.001 85, B ) -1.628 K, and C ) 449.01 K2. The solid curve is
the binodal curve, and the thin dashed curve is the spinodal
curve. The thick vertical dashed lines show the range at which
ø values were determined for samples B3 and B4.

Figure 11. (a) Calculated phase diagram for blend B3 in T
versus P format. Points A (48 °C, 0.86 kbar), B (91 °C, 0.86
kbar), and C (109 °C, 0.01 kbar) indicate the points at which
kinetic experiments were performed. Blend B3 was quenched
from the single-phase region to A, then from A to B, and finally
from B to C. (b) The time dependence of the relative SANS
intensity versus scattering vector q during phase separation
at point A. (c) The time dependence of the SANS intensity
following the A f B and B f C steps. The B f C step results
in dissolution of the two-phase structure, consistent with the
phase diagram in (a).
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(Figure 6a), was 127 °C. The new estimate of 109 °C,
which is based on a much longer experiment (the
experiment took 12 h to complete), is closer to the
calculated binodal temperature of 80 °C. By conducting
longer experiments and taking finer steps, one could
presumably verify the location of the binodal with
greater accuracy. However, finite beam time prevented
us from doing so.

Thus far we have focused on ø, which is related to
the scattering intensity as q f 0. We now discuss results
obtained for R, which is related to the scattered intensity
at finite q, and reflects the average expansion of the
chains in the blend. In Figure 12a we show the pressure
dependence of R at selected temperatures for samples

B1 and B2. We find that R decreases with pressure,
corresponding to a coil shrinkage of about 2% per kbar,
regardless of temperature. In Figure 12b we show the
pressure dependence of R at selected temperatures for
sample B3. At temperatures between 201 and 60 °C we
see coil shrinkage of about 2% per kbar. The magnitude
of the shrinkage is in agreement with that obtained
from samples B1 and B2. At temperatures less than 60
°C, however, a steeper dependence of R on P is obtained
(filled symbols in Figure 12b). We speculate that this is
due to a departure of the concentration fluctuations in
the blend from the RPA prediction. Note that at these
temperatures the deviations are relatively subtle, with
a reduction in Rg ranging between 4 and 6% from the
expected value and a ø that is indistinguishable from
stable single-phase systems (Figure 9a). Similar devia-
tions in the dependence of R on P are obtained in blend
B4. However, the deviations become evident at 30 °C,
as shown in Figure 12c.

In the theoretical section it was shown that u, the
parameter that gives the magnitude of ∆U, is equal to
ø at P ) 0 (which is very well approximated by
atmospheric pressure). Thus, the temperature depen-
dence of u for PMB/PEB blends is simply given by
Figure 9a. It was also shown in the theoretical section
that ∆V is related to the pressure dependence of ø. For
PMB/PEB blends, the ø parameter was independent of
sample composition (see Figures 9a and 10a). It is
therefore sufficient to show ø versus P for one of the
blends. In Figure 13a we show ø versus P for blend B4

Figure 12. Expansion factor, R, versus pressure for (a) blends
B1 and B2. The circles and diamonds are for blend B1 at 29
and 103 °C, respectively. The squares and crosses are for blend
B2 at 29 and 103 °C, respectively. (b) Blend B3. Filled squares,
T ) 54 °C; pluses, T ) 78 °C; diamonds, T ) 146 °C; circles,
T ) 201 °C. (c) Blend B4. Filled squares, T ) 20 °C; circles, T
) 30 °C; pluses, T ) 35 °C; diamonds, T ) 79 °C; triangles, T
) 167 °C. The lines are least-squares linear fits to the data.

Figure 13. (a) Flory-Huggins ø parameter versus pressure
for blend B4 at selected temperatures. Circles, T ) 35 °C;
squares, T ) 50 °C; diamonds, T ) 69 °C; crosses, T ) 89 °C;
pluses, T ) 108 °C; triangles, T ) 138 °C; hatched squares, T
) 167 °C. The solid lines are least-squares fits through the
data. The slope equals v/kT and the intercept equals u. (b) The
dependence of v/v0 (v0 ) 100 Å3) on 1/T for all blends. Circles,
B1; squares, B2; diamonds, B3; triangles, B4.
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at selected temperatures. A linear pressure dependence
is seen at all temperatures in agreement with eq 7. The
lines through the data in Figure 13a represent least-
squares fits, and the slope is set equal to v/kT. The
intercept is set equal to u. The temperature dependence
of v/v0 is shown in Figure 13b. Since we expect the
blends to approach ideal mixing at higher temperatures,
it is likely that v/v0 (i.e., ∆V) will be a decreasing
function of T. Equation 7 thus predicts that the slope
of ø versus P will decrease with temperature. The data
in Figure 13a,b are in agreement with this expectation.

In our previous paper11 we had noted that ∆U and
∆V in PMB/PEB blends were interrelated [notice the
similarity in Figure 9a for u(T) and Figure 13b for v(T)].
In particular, we noticed that the volume change
parameter v/v0 was approximately a linear function of
u. In Figure 14a we plot v/v0 versus u obtained from
all of the blends. It is evident in Figure 14a that the v
versus u data can be approximated by a straight line
(u < 0.001). However, we realized that other functional
forms for the v dependence of u may be applicable. In
Figure 14b, we replot the data in the format of v/kT
versus u. The reason for making this plot will be made
clear shortly. We find that this plot can also be ap-
proximated by a straight line. There is little difference
in the goodness of the fit in Figure 14a,b. The problem
is that the accessible temperature window (20-200 °C)
is, in fact, a very limited window, when one looks on
the 1/T scale (T is absolute temperature). Thus, on the
basis of the PMB/PEB data we can assert the existence
of a relationship between u and v, although the exact
functional form is still in doubt.

Let us examine the consequences of a linear relation-
ship between v and u. Let us assume that u is of the
form u ) A + B/T + C/T2 as it is for our blends. If we
assume that v is a linear function of u, then eq 7
indicates that ø at high pressures would have a cubic
dependence on 1/T, i.e., ø ) A + B′/T + C′/T2 + D′/T3.
The temperature dependence of the high-pressure data
(e.g., Figure 10a) from PMB/PEB blend is entirely
consistent with a quadratic dependence, as is the case
at atmospheric pressure. Thus, the implication of a
linear dependence between v and u implies a complexity
that is not evident in any of the data that we have
obtained. On the other hand, it is straightforward to
see that this difficulty vanishes if we assume that v/kT
is a linear function of u.

In this case, the same functional form applies to the ø
versus 1/T data at atmospheric and elevated pressures.
This is consistent with our observations. It is thus more
reasonable to conclude that for the PMB/PEB system
v/kT is a linear function of u as depicted in Figure 14b.
For PMB/PEB blends, we conclude that D ) -0.000 337
(1/kbar) and E ) 0.853 (1/kbar). The linear relationship
between v/kT and u is restricted to small values of u (u
< 0.001). When u g 0.001, we see a substantial
departure from linear behavior in both parts a and b of
Figure 14. The linear fits in Figure 14a,b are thus
restricted to data wherein u < 0.001.

A linear relationship between u and v/kT is not
unreasonable. According to the Flory-Huggins the-
ory,28,29 the magnitude of u is a measure of the difference
between the energy of interactions between unlike
monomers (ε12) and the average of the energy of interac-
tion between like monomers [(ε11 + ε22)/2]. This differ-
ence leads to a net repulsion between unlike chains that
results in phase separation when u is sufficiently large.
It is natural for the chains to move apart from each
other due to these repulsive interactions, i.e., a positive
∆V (or v). One can thus view v as a response to u, and
in the case of weakly interacting systems, one might
expect a linear response. Most linear responses hold
over a limited range of parameters. Our experiments
indicate that the linear response of v to u is limited to
u < 0.001 and v/kT < 0.0004 (1/kbar). Further work is
need to establish the underpinnings of the temperature
and pressure dependence of u and v.

Concluding Remarks

We have developed a simple framework for studying
the temperature and pressure dependence of the ther-
modynamics of polymer blends. We have shown that:

(1) The RPA is equally valid at atmospheric and
elevated pressure, provided the ø parameter is redefined
to include contributions due to ∆U and ∆V.

(2) The measured pressure dependence of ø provides
a direct measure of ∆V, in accordance with the general-
ized Gibbs-Helmholtz relationship (eq 3).

(3) Our framework leads to a consistent set of equa-
tions for analyzing the results of type I (eqs 2, 7, and
15) and type II (eq 8) experiments.

(4) The Clausius-Clayperon equation for binary
blends (eq 8) differs substantially from the one-
component Clausius-Clayperon equation (eq 1).

We have thus answered the questions that were
presented in the Introduction.

Figure 14. Relationship between the volume change of
mixing (ordinate) and internal energy change of mixing
(abscissa): (a) v/v0 versus u; (b) v/kT versus u. Circles, B1;
squares, B2; diamonds, B3; triangles, B4. The solid lines are
the least-squares linear fits through the u e 0.001 data.

v/kT ) D + Eu (18)

Macromolecules, Vol. 33, No. 21, 2000 Pressurized Polyolefin Blends 7987



The proposed reason for the pressure (P) dependence
of the ø parameter is, in many respects, analogous to
the classical interpretation of the temperature (1/T)
dependence of ø.45,46 In most polymer blends, the
measured ø parameter is a linear function of 1/T at fixed
P (ø ) A + B/T), wherein the slope B is interpreted as
the enthalpic contribution (∆H) to ø, and the intercept
A is interpreted as the entropic contribution (∆S) to ø.
However, the 1/T f 0 limit is impossible to reach due
to polymer degradation, and the uncertainty of the
extrapolated value of ø at 1/T ) 0 is extremely large.
Consequently, there is considerable debate about the
significance of the parameter A. In most polymer blends,
the measured ø parameter is a linear function of P at
fixed T (ø ) D + EP). A linear ø versus P plot is a
natural consequence of the present work, wherein the
slope E is interpreted as the volumetric (∆V) contribu-
tion to ø, and the intercept D is interpreted as the
internal energy (∆U) contribution to ø. In contrast, with
the available temperature (1/T) window, the P f 0 limit
is conveniently obtained experimentally: atmospheric
pressure is a very good approximation of zero pressure
(see Figure 13a). There is thus less room for debate
about the significance of the measured intercept of the
ø versus P plots. In our framework, we assume that ∆U
and ∆V depend on temperature only and are indepen-
dent of pressure. The only effect of pressure is to amplify
the importance of the P∆V contribution to the Gibbs
energy of mixing, ∆G. In other words, phase separation
in polymer blends such as PMB/PEB is induced by the
application of pressure because the volume of the phase-
separated state is smaller than that of the homogeneous
state, and the Gibbs energy is lowered through mechan-
ical work (P∆V). Similarly, the magnitude of the con-
centration fluctuations in single-phase PMB/PEB blends
increases upon the application of pressure because the
volume of the system decreases with increasing mag-
nitude of the concentration fluctuations.

Our interpretation differs substantially from a recent
proposal by Rabeony et al.6 The pressure-dependent
SANS data that they have obtained from a number of
different polyolefin blends are consistent with the notion
of a pressure-dependent solubility parameter. The im-
plication of these experiments is that the pressure
dependence of ø provides a direct measure of the
pressure dependence of ∆U. We note, however, that
simply introducing a pressure-dependent ∆U into the
conventional Flory-Huggins theory makes the theory
inconsistent with the generalized Gibbs-Helmholtz
relationship. In polymer blends with specific interac-
tions, it is very likely that ∆U will depend on pressure.
In such cases where ∆U changes significantly with
pressure, a new framework that is consistent with the
Gibbs-Helmholtz relationship will be needed for ana-
lyzing the data. Our work suggests that such effects may
be manifested by a nonlinear dependence of ø on P (e.g.,
ref 3).

We have used the proposed framework to analyze
SANS data obtained from a series of off-critical PMB/
PEB blends. We estimate parameters related to the
internal energy change of mixing (u) and the volume
change of mixing (v) from the measured temperature
and pressure dependence of the ø parameter. We find
that a linear relationship between v/kT and u holds for
small values of u and v, suggesting that the increase in
volume obtained upon mixing is a linear response to the
repulsive interactions between monomers.

We also explored the metastable nature of blends B3
and B4 as a function of temperature and pressure. When
we start with either of the blends that has been aged
in the two-phase region for a long time (e.g., 1 week),
we find that they must be heated to a temperature well
above the estimated binodal to obtain a single-phase
system. After homogenization, we found that we could
undercool and superpressurize our blends to tempera-
tures and pressures well within the binodal without
causing any observable phase separation on our experi-
mental time scale (5 min to several hours). For example,
for blend B3 at 0.86 kbar, we could undercool the blend
to 50 °C below the binodal. The ø parameters and the
statistical segment lengths obtained by fitting the data
from undercooled blends in the metastable region are
very similar to those determined from stable, single-
phase blends well removed from a phase boundary. This
indicates that the concentration fluctuations in the
metastable region of the phase diagram have the same
character as those in stable, single-phase blends that
have been extensively analyzed by the RPA-based
theory.
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Appendix. Estimates of Errors

The sources of errors in determining thermodynamic
properties of polymer blends from SANS measurements
are discussed in ref 22. The following error estimates
are based on the accuracy of the characterization
methods: Ni, 5%; vi, 0.1%; φi, 0.1%; bi, 3%. Typical errors
in the estimate of ø and li are 18% and 4%, respectively
(error bars for ø decrease with proximity of the blend
to the spinodal). Far away from the spinodal the error
in ø is as much as 36%. The reason for the increased
uncertainty in ø is discussed in ref 40. The uncertainties
in the temperatures and pressures reported in this
paper are 0.2 °C and 0.01 kbar, respectively.
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