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ABSTRACT Hydrodynamic interaction is included in the description of ternary polymer solutions (two 
polymers or a block copolymer mixed with a solvent). The effect of hydrodynamic interaction on the two 
decay rates (of the so called “slow” and “fast” modes) is assessed for dilute and semidilute solutions where 
Rouse dynamics are not appropriate. The Kubo formula was used to express the generalized mobilities in 
terms of the Oseen tensor and the static structure factors (convolution integral). The random phase 
approximation was used to express the interacting system static structure factors. A concentration blob 
concept allows the incorporation of hydrodynamic interaction inside each blob. Specific cases are discussed. 

Introduction 

There has been a great deal of attention given to the 
dynamics of ternary polymer mixtures involving two 
polymers in dilute/semidilute solution.l-lO Experimental 
data have been reported using quasielastic light or neutron 
scattering from either two homopolymers or a block 
copolymer in solution. Two modes are observed and are 
referred to as the ”slow” (or “interdiffusion”) mode and 
the “fast” (or ”cooperative diffusion”) mode. These two 
modes are not in general pure normal modes1’ except in 
special cases (matched degrees of polymerization, common 
good solvent, etc.). In order to interpret such data, a modell 
based on Rouse dynamics (i.e., neglecting hydrodynamic 
interaction) has been used. Since hydrodynamic inter- 
action may be important in dilute and semidilute solutions, 
it is included here using a simple approach. A concen- 
tration blob concept allows the incorporation of hydro- 
dynamic interaction inside each blob. The approach used 
to include hydrodynamic interaction is a straightforward 
application of the Kubo formula expressing the generalized 
mobilities in terms of a convolution (in reciprocal space) 
over the Oseen tensor and the interacting structure factors. 
The random phase approximation (RPA) is used to express 
the various interacting structure factors in terms of 
excluded volumes and ideal (bare) structure factors. The 
formalism is developed first for an incompressible mul- 
ticomponent polymer mixture in solution, and then it is 
applied to the ternary cases of two homopolymers or a 
block copolymer in solution. 

General Formalism 

Consider a multicomponent polymer mixture consisting 
of n different polymers and a solvent. In the homogeneous 
one-phase region, the dynamics of this system are char- 
acterized by n modes. Defining the static structure factor 
matrix S(q) composed of the n2 partial structure factors 
Su(q) ,  Sm(q), etc., and the first cumulant matrix A(q) 
(n2 components also), the dynamic structure factor matrix 
S ( q , t )  is given by the general relation12 

S ( s , t )  = exp[-A(q)tIS(q) (1) 
and the generalized mobility matrix is m(q) = A(q)S(q)/ 
kBTq2. 

In order to describe intermediate concentrations (such 
as in semidilute solutions) it is common to introduce 
concentration “blobs” (of size 0 where hydrodynamic 
interaction is important within each blob but becomes 
screened for monomers that belong to different blobs. The 
polymer solution can therefore be described as a 

mixture of concentration blobs. The two extreme limits 
in concentration (dilute solution and melt limits) are 
readily recovered when the blob size gets large (of the 
order of the radius of gyration R,) for the dilute solution 
limit and when the blob size is equal to the monomer size 
(statistical segment length b) for the melt limit (Le., when 
no solvent is present). 

A correlation length of the form 

= ( b  - ~ , p 4 / 3 ) / ( 1 -  p 4 / 3 )  + 
(R, - m v 4 ) 4 / 3 / ( 1 -  ~ 4 1 3 )  (2) 

could be used in order to estimate the blob size (here 4 
is the total polymer volume fraction and 4* is the overlap 
volume fraction). Equation 2 represents an interpolation 
formula that gives 1/44/3 and reproduces the desired limits 
at  the semidilute and melts limits. 

Because the focus of this paper is on dilute and 
semidilute polymer solutions (where hydrodynamic in- 
teraction is important), the formalism presented here does 
not apply to the melt limit whereby the dynamic RPA13 
should be used in order to recapture the inverse super- 
position rule for mobilities. 

A t  intermediate concentrations, the mobility matrix m 
can be expressed in terms of a convolution of the Oseen 
tensor and of the static structure factors matrix (Kubo 
formula) as 

m(q) = mR + [1/(2r)31~d3kT33(k - q)(S(k) - 6) (3) 

where T33(q) is the longitudinal component of the Oseen 
tensor (Le., along the q direction): 

(4) 

mR is the Rouse term contribution, 7 is the viscosity, and 
6 is an n X n diagonal matrix with elements ~ M ~ A U A  where 
6m is the Kronecker 6 function and @A and U A  are the 
volume fraction and monomer volume for component A. 
Rouse mobilities are expressed in terms of the volume 
fractions ($A) and friction coefficients (EA) as mAR = ~ A u A /  
,$A. The static RPA can be used to express the structure 
factor matrix S(k)  

(5) 

in terms of the excluded volume matrix V and ideal (also 
called “bare”) structure factor matrix S,(k) (here I is the 
identity matrix). Combining these two equations, the 

T&) = 11 - ( k . q Y / ~ ~ I / s k ~  

S(k) = S,(k)[I + VS,(k)l-‘ 
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generalized mobility matrix becomes 

m(q) = mR + [1/(2d31Jd3k T,,(k - q) X 

{S,(k)[I + VS,(k)l-' - 6) (6) 
The k integration is split into two parts,14 [m(q) - mR = 
mL(q) + m~(q) l :  one "low-k" part, mL(q) (for k < 27r/D, 
to account for interblob interactions and one "high-k" part, 
mH(q) (for k > 27r/n, to account for interactions within 
each blob. Note that for k < 2u/r the interaction 
parameters, degrees of polymerization, and molar volumes 
refer to blobs, not monomers, and the mixture viscosity 
qm should be used in the expression of the Oseen tensor 
whereas for k > 2u/{ the solvent viscosity q8 should be 
used. Since qm >> qr, hydrodynamic interaction plays a 
minor role between blobs while it is important inside the 
blobs. For simplicity, a sudden jump from qm to qs is 
assumed for k = 27r/{ (smoother variations could be used 
instead). The polymer mixture viscosity can be related 
to the solvent viscosity as qm = q&e/ rwhere R, is an average 
polymer radius of gyration. 

Inside each blob, single-chain, and interchain contri- 
butions can be separated out: 

m,(q) = [1/(2r)31(Jd3k T3,(k - q)(S,(k) - 61 - 
Jd3kT33(k - q)S,(k)VS(k)J (7) 

For dilute solutions (linear virial expansion) a known 
result15 

mH(q) = [1 / (2~)~ l{Jd~kT& - q)(So(k) - 61 - 
Jd3kT& - q)S,(k)VS,(k)j (8) 

is recovered. 
In concentrated polymer solutions, hydrodynamic in- 

teraction becomes small (because mL(q) has a small 
contribution and mH(q) becomes negligible). It should be 
noted that mH(q) > mL(q) except at  the melt limit or close 
to a critical point (where critical slowing down makes 
mH(q) very small). 
Ternary Polymer Mixtures 

The general formalism can be applied to an incom- 
pressible ternary polymer mixture (two homopolymers or 
a block copolymer in solution). Dropping the momentum 
transfer q for notation convenience, the various interme- 
diate scattering functions are given by16 

SM(t) = [1/(1 - a1a2)I((sM - a&) exp(-A1t) + 
('a1azsM + a$BA) exp(-A,t)) 
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and 

a1 = 0 1  - AMA)/Am, a2 = Am/(X2 - AM)  
These equations have been reported previoualy12J6 and 
have been applied to the interpretation of dynamic 
scattering measurements from ternary polymer mixtures 
(two polymers in solution) using a Rouse model (i.e., 
neglecting hydrodynamic interaction).l-1° The elements 
of A 

AM e q2kBT[mM& - mmSBAI/(SMSBB - SA&,) 

Z(X) = ( ~ ( 1  + x2)/2)Ln(lx + l ( / l X  - 11) - x2 (14) 
and the remaining integration (over the magnitude k) is 
performed numerically. 

When A and B are homopolymers, the static RPA gives 

SM = suo( 1 + vBBsBBo)/[ (1 + vMsMo) (1 + 
vBBsBBo) - v ~ v B A s ~ o ~ ~ B o l  

SBB = sB,"( 1 + vfisfio)/ (1 + Vfisf i ' )  (1 + 
VBBSBB') - VmVBAsfioSBBol (15) 

and Suo and S B B O  are given by the Debye function 

SMo(q) = NAuAdApA(q) 
PA(q) = 2(eXp(-q2Rflz) - qzRgA2 + 1]/q4Rg2, 

which describes 0 conditions fairly well. Here NA, UA, and 
4~ are the degree of polymerization, molar volume, and 
volume fraction respectively. Under good solvent con- 
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ditions, a swollen radius of gyration is often used. VAA, 
VBB, and Vm are the polymer A-solvent, polymer B-sol- 
vent and polymer A-polymer B excluded volumes re- 
spectively. Defining the Flory-Huggins interaction pa- 
rameter xm between the two kinds of monomers, one can 
express Vm as Vm = XAB + (VAA + VBB)/2 where we have 
assumed unit monomer volumes (UA = UB = 1) for 
simplicity. 

If the two polymer components form an A-B block 
copolymer instead, then 

Su(q) = (SfiO(1 + VBASmO + VBBsBBO) - 
Smo(VBASuo + VBBSBAo)J/D 

where 

and Pmo(q) is the structure factor which corresponds to 
the proper copolymer block sequence (diblock, triblock, 
altemating, etc). Beyond the spinodal line (obtained by 
setting D = 0), the present formalism does not apply. 

All of the ingredients are available in order to estimate 
the two decay rates A1 and A2 and the amplitudes of the 
various dynamic structure factors Su(q,t) ,  Sm(q,t) etc. 
The scattered intensity (scattering cross section) is then 
obtained as 

where and Bss2 are the contrast factors between 
components A and solvent (S) and B and solvent respec- 
tively. In the case of light scattering, these are expressed 
in terms of refractive indices while for neutron scattering 
(neutron spin echo) they depend on the scattering length 
densities. 
Specific Cases 

Considering typical parameters for a temary mixture 
of two homopolymers in solution, a number of figures have 
been generated based on the formalism described above. 
Figure 1 represents the effect of hydrodynamic interaction 
on the variation of the decay rates A1 and A2 with the 
wavenumber q. 

If hydrodynamic interaction is neglected, the Benmouna 
et al. approximation' assumes the simple case of matched 
molecular weights (NA = NB = N), equal friction coeffi- 
cients ((A = €B = (), segment lengths ( b ~  = b~ = b) and 
solvent quality (VAA = VBB = V) as well as compatible 
polymers in good solvent (XmIV << 11, which simplifies 
the expressions for the two decay rates as follows: 

x2(q) = q2(kBT/N(p(q>)(1 - % J A ~ B X ~ N ~ ( Q ) / ~ )  (18) 
Here $A and 4~ are the volume fractions for components 
A and B respectively, 4 is the total polymer volume fraction 
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Figure 1. Variation of the decay rata h(q)  and I&) with q2 
for two homopolymers in solution when hydrodynamic interaction 

NB = 7000, b~ = b~ = 8 A, 
UA = UB = 1 , $ ~  = 0.006,$~ = 0.007, $* = 0.0013, VM 
0.08, VAB = 0.088, DA = & = 4 X 10l2 A2/s. Key (curve a) q,/kBT 
= 4 X s/A*, q d k ~ T  = 4 X 10-8 s/Aa; (curve b) q,/kBT = 4 X 
W4 s/Aa, q d k ~ T  4 X W2 e/Aa. Curve a corresponds to 
negligible hydrodynamic interaction. 

q2 

increased. Parametera ueed: NA 
VBB 

(4 = 4~ + 4 ~ )  and P(q) represents the Debye function. XI 
and A2 are referred to as the cooperative and interdiffusion 
modes respectively. This approximation works better for 
high concentrations since it neglecte hydrodynamic in- 
teraction. 

Figure 2a,b show the variation of Adq2 and Xdq2 with 
the relative volume fraction 4d4 for increasing hydro- 
dynamic interaction. Two cases corresponding to the 
Benmouna et al approximation (curve a) and to the exact 
result with no hydrodynamic interaction (curve b) have 
also been included. It can be seen that the Benmouna et 
al approximation is very good for Xdq2 but misses the 
slight curvature of Xl/q2. The effect of hydrodynamic 
interaction ie seen to increase both Xl/q2 and Xz/q2. Figure 
3 summarizes the effect of increasing total polymer 
concentration 4 (but still in the semidilute region) with 
fixed hydrodynamic interaction while Figure 4 shows that 
the effect of hydrodynamic interaction becomea more 
important at  low 4 as expected. What was not expected 
was the fact that the ratio of XdA1 seem to remain constant 
for increasing hydrodynamic interaction. Note that the 
intermonomer interactions were weakened (w made 
smaller) in order to reach substantial polymer concen- 
trations without hitting the spinodal condition. 

Benmouna et al.' have also considered the case of a 
bimodal mixture of two identical homopolymers with 
different molecular weights in solution. If we set [A = &, 
= f ,  b~ = bg = 0) in 
the above general formalism for temary mixtures, the 
following decay rates were derived' 

A, = A, + [A,: - det(A)l'/2 

b, VAA = VBB = VAB = V (i.e., 

A, = Aav - [Aa: - det(A)l'/' 

with 
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Figure 2. (a) Top: Variation of the diffusion constant k1(q)/q2 
with the relative volume fraction 4J4 for two homopolymers in 
solution when hydrodynamic interaction is increased. Parameters 
used: NA = NB = 7000, b A  = bg = 8 A, V A  = VB = 1, 4 = 0.013, 
+* 0.0013, Vfi VBB 0.08, Vm = 0.088, DI, = DB = 4X1Ol2 
A2/sec, q = 0.0004 A-l. Key: (curve a) the Benmouna et al. 
approximation (no hydrodynamic interaction); (curve b) q,/kBT 
= 4 X s/As, qdkBT = 4 X 10-8 s/As; (curve c) qJkBT = 40 
X s/As, q d k ~ T  = 4 X lo-" s/As; (curve d) q,/kBT = 1.2 X 

$/AS, qdkBT = 1.2 X 
s/A8, 7 d k ~ T  = 4 X W2 s/A9. (b) Bottom: Variation of the 
diffusion constant X2(q)/qa with the relative volume fraction 4J4 
for two homopolymers ineolution when hydrodynamic interaction 
is increased. Same parameters used. 

s/A3; (curve e) q,/kBT = 4 X 

Rouse limit (no hydrodynamic interaction), X 2 / q 2  first 
increases and then decreases while when hydrodynamic 
interaction is included, Xdq2 decreases for low 9. 

Discussion 
Temary incompressible polymer mixtures (two polymers 

in solution) can sustain two modes; one of which (the 
cooperative mode) is dominated by polymer-solvent 
interactions while the other one (the interdiffusion mode) 
is dominated by polymer-polymer interactions. Hydro- 
dynamic interaction is important in dilute and semidilute 
solutions whereas it becomes screened in concentrated 
solutions and melts. The formalism used here still cannot 
account for entanglement (viscoelastic) effecta which may 
contribute at  high polymer concentrations and in melts. 

The static RPA has been used in order to express the 
interacting static structure factors. Keeping in mind the 
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Figure 3. Variation of the diffusion constants Xl(q)/qZ and 
X2(q)/q2 with the relative volume fraction 4Jtp for two ho- 
mopolymers in solution when the total polymer volume fraction 
is increased. Parameters used NA = NB = 7000, b A  = be = 8 A, 
V A  = VB = 1,4* = 0.0013, V u  = VBB 0.08, V m  = 0.088, DA = 
DB = 4 X 10l2 A2/S, q,/kBT = 1.2 X s / A ~ ,  qdkBT = 1.2 X lo-" 
s/As, q = 0.0004 A-l. Key: (curve a) 4 = 0.009; (curve b) 4 = 
0.013; (curve c) 4 = 0.026. 
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Figure 4. Variation of the diffusion constants Xl(q)/q2 and 
k2(q)/q2 with the total polymer volume fraction 4 for two homo- 
polymers in solution when hydrodynamic interaction is increased. 
Parameters used N A  = NB = 7000, b A  = b~ 8 A, V A  VB 1, 
4J4 = 0.010, 
DA = DB = 4 X 10" A2/s, qJkBT = 1.2 X l@ls s/Aa, q,$kBT 1.2 
X 1W1 s/As, q = 0.0004 A-l. Key: (curve a) qJkBT = 4 X 1V 
s/As, qdkBT = 4 X lo-' s/A3; (curve b) qJkBT = 1 X WS s/As, 
qdkBT = 1 X 1O-g s/As. Curve a corresponds to negligible 
hydrodynamic interaction. 

= 0.5,4* = 0.013, V f i  = VBB = 0.008, Vm 

usual drawbacks of the static RPA when applied to polymer 
solutions (due to the neglect of density fluctuations), the 
approach outlined here is an improvement over the Rouse 
dynamics model that has been used so far in order to 
interpret the experimentally observed trends of the slow/ 
fast modes. 

It is interesting to note two features that can be observed 
in Figures 2a and 4. Figure 2a shows a curvature to the 
variation of Xl /q2 with 9dtp which is not predicted by the 
Benmouna et al. model and which is enhanced by 
hydrodynamic interaction. Figure 4 also shows that the 
initial variation of Xdq2 with 9 has a curvature to it whereas 
this variation is linear in the original Benmouna et al. 
theory. 
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the one taken in this paper. Because they were interested 
in investigating scaling trends and avoiding numerical 
integrations, they used expansions of the various structure 
factors in the low or high q limits. Our paper focuses on 
generating specific results in the noncritical region. 
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