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SYNOPSIS

Advances in polymer synthesis have made possible the polymerization of “starburst den-
drimer” gels which are grown from a central initiator core through controlled branching
reactions with a constant multiplication of the number of monomeric blocks from one
generation to the next. The structure factor for such dendrimers is calculated using Gaussian
monomer—-monomer interactions. The results are somewhat lengthy but analytical forms

are obtained. © 1992 John Wiley & Sons, Inc.
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INTRODUCTION

Advances in polymer synthesis are making possible
the polymerization of complicated chain architec-
tures. Synthesis of highly regular structures such as
stars, combs, dendrimers, etc. are now possible.
“Starburst dendrimers” % (also referred to as “cau-
liflower” polymers) are regular polymer gels that
grow through multifunctional polymerization reac-
tions starting from an initiator core and branching
outward with a multiplication of the number of mo-
nomeric blocks from one generation to the next (Fig.
1). These dendrimers have unique structural and
topological features and may develop into important
polymer materials. Advances in the interpretation
of small-angle neutron-scattering (SANS) data,
based on the random-phase approximation model
or on the Ornstein—Zernicke type of approach have
also made possible the characterization of rather
complicated polymer systems provided that the
“bare” interaction (single macromolecule) structure
factors are available. In anticipation of the avail-
ability of SANS measurements on dendrimer gels
in solutions or mixed with other compatible poly-
mers, the single macromolecule structure factor for
such gels is calculated here. A similar calculation
was performed by Burchard et al.® using the “cas-
cade” theory. The present calculations are based on
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a direct approach and leave the functionality as an
arbitrary parameter.

CALCULATION OF THE VARIOUS
STRUCTURE FACTORS

A simple parametrization of the problem follows:
the dendrimer is regular and formed of N, branches.
Each branch is formed of N generations of mono-
meric blocks. The number of blocks is multiplied by
a factor fin going from one generation to the next.
Note that the ‘“functionality” parameter is de-
fined, here, as f + 1. Each block is composed of n
monomers forming Gaussian links with segment
length b.

Correlations between any two different blocks
separated by m blocks are given as:

[F(a, n)]%exp[—anm] (1)

in terms of the form factor:
Fla,n] = 2 exp[—ai]

= [1—exp(—an)]/[exp(a) — 1] (2)

where a = @%b2/6 has been defined as the dimen-
sionless scattering variable. Note that in the limit
ofx €1,
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DENDRIMER POLYMER GEL

Figure 1. Schematic two-dimensional representation of
a dendrimer polymer gel.

Fla,n] =[1—exp(—an)]/a. (3)

When the correlations are between monomers that
belong to the same block, then, the “finite-chain”
structure factor for Gaussian chain portions is used:

Pla,n] = 2 exp[—ali—j|] (4)

i,J
and is calculated as:

Pla,nl=n+2n{1 —[1—exp(—an)]/
[n(1 —exp(—a))]}/(exp(a) —1). (5)

Here also, note that in the limit « <€ 1, n <€ 1 with
an = @Q’R} remaining finite, P[a, n] becomes the
well known Debye function (normalized to n?):

Dl[an] = 2n%*{1 — [1 — exp(—an)]/na}}/(an)%
(6)

The calculations of the various structure factors for
a dendrimer gel are rather straightforward, but
somewhat tedious. There are four main contribu-
tions to these correlations: (1) one intrabranch self-
correlation part Sg,, (2) one intrabranch cross-cor-
relation part S/, between blocks that originate from
the same stem, (3) one intrabranch cross-correlation
part S%, between blocks that originate from differ-
ent stems, and (4) one interbranch correlations
part S;;,. These various correlations are sketched
in Figure 1.

The intrabranch self-correlation term in the
sturcture factor involves monomer-monomer cor-
relations within the same block. Since there are f *~1
blocks in generation k, the total number of blocks
per branch is:

M=

fEr=UN=-D/(f-1) (7)

k

1
therefore giving:

S%(Q) = [(fY = 1)/(f—1)]P(a,n). (8)

The intrabranch cross-correlations between blocks
that originate at the same stem involve summations
over blocks in generations k and [, respectively, and
form factors internal to each block:

N

N
SLQ)=2[Fla,m)1* Z f*¥' X2 fF
k=1

I=k+1

Xexp[—an(l—k—1)]. (9)

These summations can be easily performed to give
an analytical expression:

SL(Q) = 2{[F(a, n)]1*/[f exp(—an) — 1]}
X {f" exp(—anN)[exp(anN) — exp(an)]/
[exp(an) — 1] = (f¥ = f)/(f—1)}. (10)

Similarly, for the intrabranch cross-correlations be-
tween blocks that originate from different stems,
three summations are involved: the previous two
(over k and [) and a third summation over the num-
ber of stem points (m) that have to be crossed in
order to join the two blocks under consideration:

N 23
%(Q) =2[F(e, )12 X f*¥' X
k=2 m=13,

X(f=1)f ™2 exp[—an(m —1)]

N :
(X){1+2 X f"*exp[~en(I—k)]}. (11)

I=k+1

In other words, in going from block k to block /, one
has to meet m stems with (f — 1) f™ 1%/2 a5 the
number of possibilities. The summations can be
performed to give:
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SH(Q) = 2[F(a, m)1*{(f— 1)/
[fexp(—2an) — 1]} {A(Q) + B(Q)}
A(Q) = [f™ exp(—2anN) — f* exp(—2an)]/
[f2exp(—2an) — 1] = (fN = f)/(f— 1)
B(Q) = 2{f" exp(—anN)[f" exp(—anN) —
fexp(—an)]/[f exp(—an) — 1] — f exp(—an)
X [f2N exp(—2anN) — f2exp(—2an)]/
[f2exp(—2an) — 1] — f N exp(—anN)
X [exp(anN) — exp(an)]/[exp(an) — 1] +
fexp(—an)(f¥—f)/(f—1)}/
[fexp(—an) —1]. (12)
Note that this term is proportional to (f — 1) and

goes to zero for star-branched polymers (f = 1).
Finally, the interbranch correlations are:

N N
Sp(Q) = [Fla, )] 2 f* 2 f

k=1 =1

Xexp[—an(l+k—2)] (13)
and are summed up to give:

Su(Q) = [F(a, n)]*[f" exp(—anN) — 1]*/
[f exp(—an) —1]%. (14)

The total structure factor is the sum of all of these
partial structure factors:

S(Q) = Ny [S5(Q) + SL(Q) + S%(Q)]
+ Ny(Np, — 1)8S3(Q). (15)

In order to obtain a structure factor which is nor-
malized to unity, one has to divide S(Q) by N%
where Ny = [nN.(f¥ — 1)/(f — 1)] is the total
number of monomers in the gel.

DISCUSSION

Figure 2 shows the behavior of S(Q) for increasing
number of generations N when all other parameters
are fixed. As expected, the radius of gyration in-
creases with N. Varying the number of branches
has a similar effect. the variation of f, on the other
hand, has a smaller effect. Burchard et al.?® consid-
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Figure 2. Variation of the structure factor S(Q) with
the dimensionless variable @b for a dendrimer polymer
gel with N,= 3, f = 2, n = 1, and with N varying from 5
to 20.

ered the case where the number of generations is
varied while keeping the total number of monomers
Nr constant. A similar situation is considered in
Figure 3 which corresponds to the case Ny = 10,000
(kept constant), N, = 3 and b = 5. The relative
radius of gyration (R,/b) is obtained by performing
Guinier fits (Log[S(Q)] vs @?) and plotted in Figure
3 for increasing number of generations. Two cases
are considered: f = 2 (trifunctional branching) and
f = 3 (tetrafunctional branching). Even in this
simple-minded Gaussian model, the starburst den-
drimer is seen to become more and more compact
when the number of generations and the function-
ality are increased.

The calculations presented here are based on the
assumptions of Gaussian interactions between
monomers. In order to account for excluded volume
effects (swelling) or chain collapse (shrinking) ef-
fects, it is customary to use an excluded volume pa-
rameter v in an ad hoc manner, i.e., by redefining «
= @%%/(2v + 1)(2v + 2) and replacing nN by
(nN)?. This procedure has no justification other
than it can mimic swelling and is often used along
with the Debye function (with a swollen radius of
gyration) for linear chains. Assuming an excluded
volume parameter from the outset by replacing |i
—j| by |i —j|* in the expression for P(«, n) would
yield complicated nonanalytical expressions and
F(a, n) would still remain to be computed numer-
ically. When the number of generations gets large,
the simple-minded Gaussian model breaks down
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Figure 3. Variation of the relative radius of gyration
as extracted from Guinier fits to S(Q) with increasing
number of generations. The total number of monomers is
kept constant (Nr = 10,000) and N, = 3. The two vari-
ations correspond to the two cases: f = 2 and f = 3.

even with the incorporation of excluded volume.
Complicated effects as chain stiffness and screening
of reacting groups are still not well understood.
Two competing models for the variation of the
monomer density inside the dendrimer have been
presented.*® The de Gennes model® predicts an in-
crease of the monomer density which brings about
a screening of the reacting groups due to crowding
and therefore leads to a termination of the poly-
merization reactions. This “caulifiower” model as-
sumes that the dendrimer grows outwardly only. On
the other hand, computer simulations performed by
Lescanec and Muthukumar® report a decrease of the
monomer density. They observe a substantial

amount of “turning back” of the growing portions
so that after a few generations, the reacting groups
could be found not only outside but also inside the
dendrimer.

In order to account for intermolecular correla-
tions, “interparticle” interaction models could be
used to describe either dendrimer solutions, den-
drimer melts or blend mixtures of dendrimers with
other polymer components (e.g., linear homopoly-
mer). The mechanics of such models are well known
whether these are based on the random phase ap-
proximation or on an Ornstein-Zernicke type of ap-
proach.

Useful comments by Professor W. Burchard are greatly
appreciated.
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