e

Static scattering function for randomly broken chains®

Boualem Hammouda

Research Reactor and Department of Physics, University of Missouri, Columbia, Missouri 65211

Jesus J. Garcia Molina and Jose Garcia de la Torre
Escuela Universitaria de Informatica, and Departamento de Quimica Fisica, Universidad de Murcia,

Murcia, Spain
(Received 1 April 1986; accepted 20 June 1986)

To analyze small angle neutron, x-ray, or static light scattering data from stiff macromolecules
in dilute solutions, semiflexible chain models are needed. The randomly broken chain model is
used to calculate by numerical simulation the static scattering function. It is then compared to

other models.

INTRODUCTION

Many models have been proposed to describe macromo-
lecular chain stiffness. Some of them, such as the worm-like
chain model,'? describe the chain as a continuous object
rather than a linked series of discrete monomeric units. An
advantage of this continuous chain approach (large number
of monomeric units N— o, small statistical segment length
b—0 with the requirement that the chain contour length Nb
remains finite) is that some of the calculations are tractable
analytically. Even though the intramolecular pair distribu-
tion function of worm-like chains is not known, equilibrium
averages such as the one involved in the static structure fac-
tor:

N
S(g) = (1/N?) Y (exp(ig-Ry)) (1
=1

have been estimated. In this definition, ¢ = (47/4)sin(8 /2)
is the scattering wave number, R; = R; — R; is the interdis-
tance between two monomers i and; (that belong to the same
chain) and all monomers have been assumed to scatter iden-
tically. Some models are based on expansions close to the
rigid rod limit® or to the random flexible coil limit* whereas
one model’ is based on an extrapolation between these two
stiffness limits.

The randomly broken chain model introduced by Gar-
cia Molina and de Ia Torre® assumes that the chain is made of
v straight segments, each comprising a random number of
monomeric units. These authors® calculated single-chain
characteristic quantities such as the radius of gyration or the
end-to-end distance by generating (on a digital computer) a
sampling of randomly broken chains. It seems useful (for the
analysis of small angle neutron, x-ray, or static light scatter-
ing data from macromolecules in dilute solutions) to calcu-
late the static structure factor S(g) for this model and com-
pare it with a very simple model, the sliding rod model.” This
last model assumes that the chain behaves as a rigid rod for
lengths smaller than a characteristic length ¢ = (n — 1)b
(used as a stiffness parameter reminiscent of the statistical
Kuhn length) whereas longer chain portions follow Gaus-
sian statistics (flexible coils). The randomly broken chain
model is also compared to three other models valid in the

* Dedicated to Professor R. K. Osborn, University of Michigan, on the oc-
casion of his formal retirement.
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light scattering (small ¢) region: Norisuye-Murakama-Fu-
jita model® based on an expansion of the distribution func-
tion near the rod limit, Yamakawa-Fujii® (Hermite polyno-
mial expansion of the distribution function), and Sharp-
Bloomfield® (expansion of the distribution function close to
the Gaussian coil limit).

Only finite size chains at the infinite dilution limit are
considered. Since scattering experiments are performed at
finite concentrations (dilute solutions) concentration cor-
rections would have to be included to analyze scattering
data. Such corrections are not discussed here. Also excluded
volume effects are neglected, i.e., solutions are assumed to be '
at the theta condition.

THE RANDOMLY BROKEN CHAIN AND THE SLIDING
ROD MODELS

Randomly broken chains are easily generated (Garcia
Molina and de la Torre®) by assuming a probability p that a
bond be “rigid” and 1-p that it be “flexible.” A rigid bond
links two colinear statistical segments whereas a flexible one
is an unhindered universal joint. The two limits in flexibility
for a rigid rod and a freely jointed chain are obtained with
p=1and p =0, respectively. A persistence lengthc =5/
(1 — p) and a statistical Kuhn length a = 2¢ can be defined.

A statistical set of chains is generated by assuming ran-
dom orientations (two angles for each step) if the bond is
fiexible. The static structure factor is then calculated by
forming the following ensemble average over conforma-
tions:

N
S(ga) = (1/N?) ¥ (sin(qR;)/qR;), (2)
ij=1
where an average over the random orientation of the scatter-
ing wave vector q has already been performed.

In the Introduction, it was mentioned that the rigid rod
portion [R;<(n — 1)b ] inthe sliding rod model is reminis-
cent of the statistical Kuhn length a. A note of caution is in
order at this point. For finite chain lengths, the rigid rod
limit is obtained for (n — 1)b = L in the sliding rod model
whereas this limit corresponds to an infinite Kuhn length for
conventional worm-like chains (as well as for randomly
broken chains). Even though the same symbola = (n — 1)b
is used (merely for the sake of comparison of the two mod-
els) to represent chain stiffness, it should be remembered
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that a and (n — 1)b are identical only for infinite chains and
for finite chains close to the flexible coil limit. In the sliding
rod model, the static structure factor is given by

n—1
S(ga) =1/N+ 2/N[ z (1 — i/N)sin(qbi)/qbi

i=1

N
+ 2 (1 —i/N)exp( — ¢°b 2m'/6)], (3)
where we have kept the self-term (i =) and used the fact
that the equilibrium average depends on |i —j| only. The
remaining summations in Eq. (3) are performed numerical-

ly.

OTHER SEMIFLEXIBLE CHAIN MODELS

Three semiflexible chain models useful for the analysis
of small angle light (small ¢) scattering data are compared
to the randomly broken chain model. Norisuye, Murakama,
and Fujita® carried an expansion of the distribution function
around the rigid rod limit (valid for L /a<1) up to the fifth
order in L /a to obtain

S(ga) = Py + P,(L /a) + P,(L /a)* + Py(L /a)®
+ P,(L/a)* + Ps(L /a)°, (4)

where the coefficients P, P,, P,, P,, P,, and P; are given in
Eq. (26) of Ref. (3). Note that there is a misprint in the
expression of P; [Eq. (26)] which should read

P, = (1/63x%)[ — 256x
+ (1512 — 500x2 + 307x*/15)sin(x)
— (1256x — 124x° + 31x°/15)cos(x) ], (5)

where x = gL. Yamakawa and Fujii® used a Hermite polyn-
omial expansion of the distribution function and presented
numerical variations of S(ga) for different values of L /a
(validfor 1 < L /a<10). Sharp and Bloomfield,’ on the other
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FIG. 1. Single chain pair distribution function P(R;/S;) for increasing
normalized monomer-monomer interdistance R,;/S; (S; is the contour

length between monomers i and j) for the randomly broken chain model
(p=0.7,0.8,and 0.9).
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FIG. 2. Kratky plot (ga)*(L /a)S(ga) vs ga for the randomly broken chain
model with N = 51, p = 0.7, 0.8, and 0.9 and for the Yamakawa—-Fujii mod-
el with L /a = 5 and 10.

hand, used the first Daniels* distribution function (expan-
sion around the Gaussian coil limit, i.e., valid for L /a > 10)
to calculate

S(qa)
= (2/y*)[exp( —y) — 1 +y] + 4a/15L + 7a/15yL

— llaexp( —y)/15L — Ta exp( — y)/15yL (6)

withy = g’a>L /6a as given by Eq. (B3) of Ref. 9. Note that
the last term in this Eq. (B3) has been misprinted and was
corrected in Eq. (27) of Ref. 8. Note also that lengths have
been normalized in this paper with respect to the Kuhn
length a, as done in Refs. 3, 8, and 9.

DISCUSSION

As for the Kratky-Porod worm-like chain, the pair dis-
tribution function P(R ;) for a randomly broken chain is not
known analytically. Garcia Molina and de la Torre® plotted
P(R;) (numerically) for N = 200 and p = 0.98. We are re-
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FIG. 3. Comparison of the Kratky plots (ga)*(L /a)S(ga) vs gafor (a) the
randomly broken chain model (¥ = 51, p =0.7) and (b) the sliding rod
model (N =51,n=6).
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FIG. 4. Kratky plot (ga)*(L /a)S(ga) vs ga for the sliding rod model with
n =26, N =51, 101, and 201.

producing their result (with a normalized variable R,;/S);)
inFig. 1 forp = 0.7, 0.8, and 0.9 to show the effect of varying
chain stiffness. As the stiffness parameter p increases, the
broad peak of P(R,;/S;;) is seen to move to higher values of
R, /S, its height decreases whereas the height of the sharp
peak (atR,;/S; = 1) increases. This sharp peak close to R,/
S = 1 corresponds to the relative number of chains that
turned out to be single rods. Note that for the sliding rod

model P(R;/S;) is given by

P(R,/S;) =1; R,<a,
P(R;/S;) =4mR ;(1/2x8})>"?
xXexp(—3R}/28%); R, >a, (7

where S, is the contour length between monomers / and .
Because of this sudden change from a rod-like to a flexible
coil-like distribution at R, = g, the sliding rod model is not
realistic physically and therefore gives an overall oscillatory
behavior of the static scattering function'® as shown in Figs.
3 and 4. Figure 2 represents the effect of changing
chain stiffness (the parameter p) on the product
(ga)*(L /a)S(ga) (Kratky plot). Recall that this product
saturates to a constant value for Gaussian flexible chains but
grows linearly (at high ga) for rigid rods and semiflexible
chains.

The three solid curves of Fig. 2 correspond to L /a = 5,
10, and 15. On the same figure, S(ga) given by Yamakawa
and Fujii (taken from Table I of Ref. 8 for L /a = 5 and 10)
is plotted for the sake of comparison. Figure 5 shows the
variation of § ~'(ga) vs (ga)? (Zimm plot at the infinite
dilution limit) for the randomly broken chain model and for
the three other expansion based models (Norisuye-Mura-
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FIG. 5. Infinite dilution Zimm plot S ~!(ga) vs (ga)? for the randomly
broken chain model (RBC), for the Norisuye-Murakama-Fujita (NMF)
model, for the Yamakawa-Fujii (YF) model, and for the Sharp-Bloom-
field (SB) model.

kama-Fujitafor L /a = 0.5, Yamakawa-Fujii for L /a = 10
and Sharp-Bloomfield for L /a = 49.5).

This paper dealt with the static structure factor (equi-
librium single chain property) of semiflexible chains at infi-
nite dilution. The sliding rod model has been applied suc-
cessfully to investigate dynamical properties”'® as well (the
initial slope of the dynamic scattering function also called
first cumulant). Such dynamical properties could also be
investigated for randomly broken chains.
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