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ABSTRACT

The Fixman-Kovac formulation of chain dynamics with constraints
is used to calculate the first cumulant ®(g) of the dynamic
scattering function. This general formalism is applied to the
case of freely jointed chains. 1t is shown that the large q
limit (g being the scattering wavenumber) of 2(q) for a chain
of N bonds in the absence of hydrodynamic interaction is
proportional to the ratio (2N+3)/3(N+1) representing the
fraction of unconstrained degrees of freedom of the chain. The
inclusion of hydrodynamic interaction seems to enhance the
apparent segmental diffusion. The use of constrained chain
dynamics has no appreciable effects, however, on the behavior
of 9(g) in the small and intermediate g regions for long enough
chains. This formalism can be used to interpret neutron (spin
echo) scattering experiments from semiflexible polymers in
solution.

INTRODUCTION

The first cumulant of the dynamic scattering function can be
expressed as[1l]:

g(q) = <p*(gllp(g)>/<p*(qglplqg)> (1)
where <...> represents an equilibrium average,

p(qg) = L exp(iafiv)
v

is the density of the N+l beads of a polymer chain in the
Fourier space, and L is the Kirkwood-Riseman diffusion operator
in the full 3N configuration space. (g) has been extensively
studied for flexible (Gaussian) chains. ,For instance, the high
g limit yields the segmental diffusion g'D regardless of

chain length. When applied to freely jéinYed chains, special
care must be taken. Constrained degrees of freedom (bond i
lengths in this case) must be excluded before performing the 1
equilibrium average. This was pcinted out by Stockmayer and -
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Burchard(2) who considered the example of a Fraenkel dumbbell.

A generalized dynamical operator L is obtained using the
Fixman-Kovac{3) formalism of chain dynamics with constraints
and then used in Eq. (1) to derive the first cumulant for
freely jointed chains. Other approaches such as the
Titulaer-Deutsch{4} formalism could also be followed.

DIFFUSION EQUATION WITH CONSTRAINTS

Following Fixman and Kovac[3], a set of constraining forces
P. (j=1,...N) are introduced in the Langevin eqguation of
métion of each bead:

dR/dt = H_ [, + CyyP5 * ?x] (2)
In this notation, Greek indices run over beads while Latin ones
run over bond lengths, H, is the diffusion matrix (case of
preaveraged hydrodynamic “interaction), FX are the random
Brownian forces acting on the beads, §v are "soft" coupling
forces between different bonds and

X378, 378, 5-1

is a constant matrix introduced for notation convenience. A
better suited coordinate system corresponds to the center of
friction B_ and bond lengths B.. The constraining forces

can be eliminated by using thelfact that they are in the direction
of the bond vectors whose magnitudes are constant. Langevin
equations for 5; and S} can be derived:

dEo/dt = v,

dBj/dt = E}k.(zk + £, (3)

where {f ,f } and §k are redefined Brownian and soft
forces rgsp ctively, Vo is the lowest Zimm eigenvalue and

F =11 -¢"scficTue
with

- R

= - -1
Mem = By By IR77),

— {
ka = I;k's‘m Bkm -% - 'zc ﬁ C"::’

The vectorial notation used contains arrows to represent
cartesian components and underlining to identify the different
beads in the polymer chain. Using the fluctuation-dissipation
theorem, a sSmoluchovski equation n+1f0L the probability
distribution for bead positions R ={K ,...RN] can be
obtained: ©

av(BM* ¢y sar = pRNYL) wNHl 4 (4)

R RSNy W 0

7 5 o A ALY b -
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where D(ﬁN*l) is the diffusion dynamical operator which is
related to a generalized Kirkwood-Riseman operator through

N N+1 N
DM ) e (@)Y, (R ey @M L™ p(q).
with
N+1 = 2
L(R ) = kBTlaLn(qu)/aﬁv + a/aivl.xvx.a/anx (5)

and

where Y (ﬁN*l) is the equilibrium distribution function. The

second ®Jterm in the bracket represents contributions due to
the constrained (sometimes called "hard") coordinates.

FIRST CUMULANT OF THE DYNAMIC SCATTERING FUNCTION
Using the following identity:

<p*(q)Le(g)> = kyT I <(3p*(q)/3R).K . (230(q)/aR))

v, A

the first cumulant for freely jointed chains can be obtained
as:

o 2 s =t
Q(g) = kBTv£X<exp(1q.va)Hvx><£x<exp(1q.§vx)>

Q= A = A T .
—kBTv2X<exp(1q.Kvx)lggq.n.qg g]vx>/£ <exp(1a.§vx)>(6

a is a unit vector along the @ direction. The first term in
eg. (6) was calculated by Akcasu and Higgins(6] and yields the
segmental diffusion (characterized by a diffusion coefficient
D_) at high g. The second term comprises contributions from
the constrained degrees of freedom and therefore tends to
decrease this high g limit to:

Lin[2(q)/q?] = [(2N+3)/3(N+1)]D_ (1)
g-~0 .

when hydrodynamic interactions are neglected. The ratio
(2N+3)/3(N+1) represents the fraction of unconstrained degrees
of freedom. The inclusion of preaveraged hydrodynamic
interactions tends to enhance the apparent segmental
diffusion[5]. The use of constrained chain dynamics, however,
has no appreciable effects on the behavior of Q(g) in the small
and intermediate g regions whereby the whole chain or large
chain portions are probed.




CONCLUSIONS

Eq. (6) represents the main result of this work. Evaluation
of the ensemble average in the second term is not possible
analytically. An approximation which consists in repacing R by
its ensemble average <R> brings some simplifications[5]. 1In
the free draining limit, for instance, eq. (6) simplifies
further to become:

2(q) = [g%D,/<o*(q)p(q)>]((2N+3)/3

+ N[ (gb)-(2/gb)j,(gb) ]} (8)

where 3j_(gb) is the spherical Bessel function of order n and
b is the bond length.

The formalism presented here is well suited to interpret
neutron spin echo scattering data from dilute semiflexible
polymer solutions provided a concentration dependence scheme
(not discussed here) is used, Akcasu and Higgins{6] used the
first term in eq. (6) to interpret such experiments on
polytetrahydrofuran in carbon disulfide and polystyrene in the
same solvent performed by Allen and Coworkers[7}. Nicholson,
Higgins and Hayter[8) were able to interpret their spin echo
experiments with only partial quantitative success using a Gaussian
chain model. The corrections discussed here (second term in eq.
(6)) may improve the interpretation of such data.
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