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Abstract - Aspects of polarized coherent quasi-elastic light
scattering by dilute macromolecular solutions are reviewed.
Existing theories of translational and conformational dif-
fusion in chain molecules give generally good but not corn-
pletely quantitative descriptions of the scattering behavior.

INTRODUCTION

In recent years the most challenging problems in the field of light scatter-
ing by polymer solutions have been found in semi-dilute and concentrated
solutions and molten polymers. Our present knowledge of the dynamical
behavior of isolated chain molecules in very dilute solutions, though farther
advanced, is still far from complete. As experimental data accumulate and
techniques of analysis improve, higher levels of description become neces-
sary. From this point of view we may be at a watershed at the present time.
here we review some selected aspects of recent progress and hope to point out
areas where further investigation would be useful.

Experimental techniques or methods are not discussed here. We simply assume
that the dynamic structure factor for coherent polarized scattering by iso-
lated macromolecules,

N N
S(q,t) = <exp iq.(r(t) — r1(O))> (1)

j k

can be obtained from the experiments. here the magnitude of the scattering
vector is q = (4ir/X)sin(O/2), and rj(t) is the position of chain element j
at time t. An unusual degree of aEention has been given to the first
cumulant r, defined as the initial time derivative,

r = -[dlnS(q,t)/dt]0 (2)

because it can be related theoretically to an equilibrium average, as first
shown in the polymer context by Akcasu and Gurol (1). We shall also focus
on r in the text to follow, hut it should be recognized that in this way a
certain part of the experimental material is simply ignored. The reason is
not hard to find: only for a very few molecular models (e.g., rigid rods,
Gaussian chains with pre-averaged hydrodynamic interaction) has the full
expression for S(q,t) been evaluated.

TRANSLATIONAL DIFFUSION

During the past several years there has been ample confirmation (see, for
example, refs. 2-4) of the fact that the observed translational diffusion
coefficients of flexible chains in theta solvents lie some 15 or 2O7 below
the values predicted by the classical theories of Kirkwood (5) or ZLmm (6).
Expre3sed in terms of the ratio p of root-mean-square radius of gyration
<5L>: to Stokes radius, Rh kBT/6iiilOD, the experiments yield p values in
the range 1.2 to 1.3, while the classical theories (which differ by only
l.7L) give about 1.5. The effects of polydispersity and of polymer concen-
tration on the analysis of the experiments have been given careful atten-
tion, and these clearly cannot account for the discrepancy, so that some
improvement of the theory is needed. Several different attempts in this
direction have been made recently.

The Kirkwood theory leads (in the long-chain, non-draining limit) to the
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identification

i/Rh N2 z<i/R..> (3)
l<J

where au is the distance between chain eiernents (beads) i and j; and, if
Gaussian1statistics,are used, a iirniting vaiue is reached of
p E <S2>/Rh 8/3 = i.5045. It was suggested by Guttman, McCrackin and
Han (7) that real chains at the theta temperature, involving both repulsive
and attractive interactions among segments, can deviate from this ratio even
for very large N, and they offered some Monte Carlo results for self-avoid-
ing lattice chains with nearest-neighbor attractions in support of this
idea. More recently Fixman and Mansfield (8) have reconsidered this ques-
tion, and on the basis of additional simulations, plus a perturbation theory,
they do not regard it as the likely explanation. Indeed, they conclude
that all physically relevant moments of the chain length distribution must
scale at the theta point as they do for Gaussian chains. The rather slow
convergence of the sum in eq.(3) to its limit, which has long been known,
may account for a small part of the discrepancy, but it seems altogether
likely that more fundamental dynamical questions are at hand.

Several years ago Zimm (9) studied by Monte Carlo methods the translation
diffusion of an equilibrium assembly of Gaussian chains with the full (not
pre-averaged) version of the Oseen hydrodynamic interaction, making the
following approximation: each individual chain rigidly retains its conforma-
tion, undergoing only rotational and translational motions. This condition,
probably originally used by Kramers, is correct for free-draining conditions
or for the pre-averaged form of the Oseen interaction, but if the full
fluctuating Oseen formula is used it is not exact. Nevertheless, Zimm's
results extrapolated to large N are in excellent agreement with the experi-
ments for polystyrene in theta solvents. See also related calculations by
Garcia de la Torre and Freire (10) and by Edwards, Kaye and Stepto (11).
Fixman (12) investigated the validity of the rigid-body algorithm and found
that in fact this offers a lower bound to D, but his own Brownian dynamical
simulations (Ref. 13) for even rather long Gaussian chains do not yet
approach the Zimm figures.

A surprising turn has been taken very recently with Fixman's (14) discovery
that the introduction of a simple form of "internal viscosity", extending no
farther than third bonded neighbors, suffices to push the results very close
to the Zimm limit. In other words, a local deviation from the standard
model seems to produce a sensible effect on a global transport property,
with an attendant departure from strict Gaussian scaling! It may be recalled
that "internal viscosity" has a long history, and may have several distinct
physical bases. For one, there must be some energy transfer among the
mechanical degrees of freedom totally within the chain molecule, without
solvent participation. It also is generally recognized, however, that de-
partures from a strictly Gaussian chain backbone potential can cause local
or semi-local dynamical effects which can be mimicked by introducing an
internal-viscosity term into the basic equation for a Gaussian chain (Refs.
15-17). This circumstance is scarcely surprising, but that such an effect
should persist in the zero-frequency limit of pure translation is highly
disturbing and demanding of further study.

It has been argued by Oono (18) that the Oseen form of the hydrodynamic
interaction, or its macroscopic-hydrodynamic extensions, such as that of
Rotne and Prager (19), has been pushed too far, and that there is a basic
inconsistency in treating the solvent as a hydrodynamic continuum while
explicitly considering the full coordinate space of the chain molecule;
alternate formulations have been offered by Oono and Freed (20) and by Ng,
Kapral and Whittington (21). Oono shows that the Oono-Freed approach, which
bears some resemblance to the Onuki-Kawasaki (22) treatment of critical
dynamics in binary fluid mixtures, confirms the Oseen-Kirkwood equation
when treated by renormalization-group techniques only to first order in the
variable e = 4-d, where d is the dimensionality of the system. Unfortun-
ately the higher-order terms are extremely difficult to calculate, which
makes a full assessment of Oono's viewpoint rather elusive. However, the
first-order (in ) calculation of translational diffusion of Gaussian chains
by Oono and Kohmoto (23) gives p = 1.24, in excellent agreement with the
experiments, and in this calculation the full fluctuating (non-preaveraged)
Oseen hydrodynamic interaction was used. We need some didactic aid.
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Whatever the ultimate hydrodynamic theory may turn out to be, an interesting
experimental situation is encountered in the evaluation of QELS from solu-
tions of block copolymers. The first cumulant for both linear and star
block copolymers has been discussed by Burchard et al. (24). The most
interesting situation corresponds to the case where the total refractive
index increment of the macromolecule vanishes, one block having a higher
index than the solvent and the other block a lower index. In this strange
case, the apparent mean square radius of gyration can go to indefinitely
large negative values and the apparent translational diffusion coefficient
(limit of F/q2 at zero angle) becomes indefinitely large and positive. This
latter bizarre behavior is, however, seen only in the initial time deriva-
tive (i.e., the defined first cumulant, and after the internal mode relaxa-
tion is accomplished the standard translation diffusion coefficient emerges
to dictate the time correlation function at low angles. This example nay
suggest that it is misleading to speak of translational self-diffusion as
'center-of-mass" diffusion, as is often done. Although the center of mass
is a meaningful quantity in a sedimentation experiment, it plays no special
role in QELS or other common methods of observing free translation diffu-
sion: any label or labels on any part of the molecule will suffice to
reveal the motion over sufficiently long times or distances, and at shorter
tines the effects of internal motions have to be explicitly considered and
do not require the center of mass to be the center of attention.

GLOBAL INTERNAL MOTIONS

As the scattering angle or scattering vector magnitude is increased, the
apparent diffusion coefficient r/q2 increases because of the contributions
from internal motions. It has been convenient to discuss the initial in-
crease in terms of a dimensionless parameter C defined in the relation

Dapp
r1q2 = D(l + C<S2>q2 + ) (4)

where D is the translational diffusion coefficient. The quantity C depends
theoretically on chain topology, polydisparsity, chain stiffness to a
negligible extent on excluded volume, and on whether full or pre-averaged
hydrodynamic interactions have been assumed (Refs. 25-27). It can be ob-
tained quite well (Ref. 28) from a graphical procedure analogous to the
Zimm plot. Experimental data for polystyrene under theta conditions (Refs.
4, 29) have been interpreted to indicate that the pre-averaged Oseen inter-
action is superior to the full fluctuating one. However, Bantle, Schmidt
and Burchard (30) find that the evaluation of C is sensitive to the sampling
time of the time-correlator, and suitably extrapolated value leads to the
opposite conclusion. It is not hard to show (Ref. 31) from the Pecora (32)
solution of the pre-averaged Zimm model that such an effect is indeed to be
reckoned with.

The effect of chain stiffness on C has been estimated only approximately
(Ref. 27), and the very rapid relaxation rates of really stiff coordinates
(Ref. 33) render an experimental evaluation of the true first cumulant some-
what arbitrary. As chain stiffness is increased, the apparent value of C
first rises and eventually decreases again toward the rather low value
characteristic of a rigid rod. Thus one cannot really use C as a reliable
indicator of chain stiffness, and it is much better to work with C itself.
Schmidt's (28) experimental results, however, are consistent with the theore-
tical estimate.

INTERMEDIATE-SCALE MOTIONS

At sufficiently high wave vector & but still corresponding to the condition
qb<<l, where b is a bond length, a regime is reached ii which the first
cumulant for Gaussian chains becomes proportional to q3 and independent of
molecular weight or branching. For the full Oseen interaction, at the
theta point, the theoretical plateau value is given by

F = q3kT/16nQ
(5)

and for pre-averaged hydrodynamics the constant is lowered from 1/16 to
1/6r. Again the experimental data (Refs. 24, 34) are in better agreement
with the pre-averaged figure, and the observed values of r actually lie
below both theoretical estimates. Among possible ways of rationalizing
this departure we may consider the following:
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(1) The contributions of the faster internal modes may relax too rapidly,
so that the true first cumulant may be unattainable for this reason. This
suggestion may be approximately explored by using the full "shape function"
long ago calculated for very long Zimm (pre-averaged) chains by duBois-
Violete and deGennes (35), which takes the scaled form S(q,t) = S(Ft) in
the q region. The original equations are a bit awkward for numerical use
at short times, but Barrett (36) has cast them into handier form. From his
results it seems hard to squeeze out more than a 1 or 27 reduction of the
effective F, and about l57 is needed.

(2) Local deviations from a Gaussian backbone potential, i.e., chain stiff-
ness, may begin to contribute significantly, even for polystyrene. The Kuhn
length ! for this polymer is about 2 nn, so with an argon ion laser the
region of interest corresponds to about q = 0.06. To investigate this ques-
tion, we have extended the work of Schmidt (27) into the higher-q region
with both wormlike and "sliding-rod" models for chain stiffness. We find
an effect of the desired sign, but again it is difficult to get more than a
27 reduction if realistic parameters are employed.

(3) It is logical to expec that "internal viscosity" would also influence
the first cumulant in the q3 region, although Allegra and Ganazzoli (37)
found no effect on I' in their treatment. Following a perturbation method
of incorporating the recent Fixman (14) approximation to an internal visco-
sity, we do find some reduction of F, but no reliable numerical estimate is
available. In view of our earlier allegation that internal viscosity is
perhaps in large part a manifestation of departures from purely Gaussian
conformational statistics, there may be some redundancy between this calcu-
lation and the previously described one. A more complete study is needed.

(4) It may be that the basic incompleteness of the Oseen description of
hydrodynaraic interaction at the molecular level is responsible for the
trouble. The apparent superiority of the pre-averaged form of this inter-
action is not understood. Clearly many challenges remain for the theoreti-
cian, even for single chains in theta solvents.

We have not attempted to review QELS in good solvents, although there is a
good body of both experimental and approximate theoretical results. And, as
said earlier, the most interesting questions concern scattering at higher
concentrations, in the semi-dilute region and beyond, but this is not the
province of the present discussion.
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