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Chapter 31 – STRUCTURE FACTORS FOR POLYMER SYSTEMS 
 
 

Up to now, this book has focused on infinitely dilute systems only. Such systems are non-
interacting and require solely the calculation of the form factor P(Q) for isolated particles. 
More concentrated (or interacting) systems require the calculation of the structure factor 
S(Q). Structure factors for fully interacting polymer systems are considered here. These 
apply to semi-dilute and concentrated polymer solutions and polymer blend mixtures in 
the homogeneous phase.  
 
 
1. SCATTERING FROM INCOMPRESSIBLE SYSTEMS 
 
Consider a system consisting of N “particles” of scattering length bP occupying the 
sample volume V. The following would still hold if the word “polymers” were 
substituted for the word “particles”. The scattering cross section is proportional to the 
density-density correlation function as follows: 
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Here nP(Q) is the fluctuating particle density in Fourier space. The cross section for 
particles in solution is given by: 
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The subscripts P and S stand for particle and solvent respectively. For the sake of 
convenience, the following scattering factors are defined:  
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The specific volumes vP and vS and scattering length densities PPP vb=ρ  and 

SSS vb=ρ are defined for the polymer and the solvent respectively. To clarify, vP is the 
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monomer volume and vS is the volume of the solvent molecule. The scattering cross 
section becomes: 
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Most scattering systems are incompressible. It is often convenient to make the following 
incompressibility assumption: 
 
 0)Q(nv)Q(nv SSPP =+ .     (5) 
 
This introduces the following simplification: 
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In other words: 
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This simplifies the cross section to the following form: 
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This is reasonable since the contrast factor Δρ2 is always calculated relative to a 
“background” scattering length density value. Here, the solvent’s scattering length 
density is taken to be that reference value.  
 
 
2. INTER-PARTICLE INTERACTIONS 
 
Consider a system consisting of N polymers of contrast factor Δρ2 occupying volume V. 
Each polymer comprises n monomers of volume v each so that the polymer volume is vP 
= nv. Let us separate out the intra-polymer and the inter-polymer terms in the scattering 
cross section as follows: 
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The indices α and β run over the polymer chains and the indices i and j run over the 
monomers in a specific polymer chain. Consider a pair of polymer coils (called 1 and 2) 
and sum over all pairs. 
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Note that this formalism holds if the word “particles” were to be substituted for the word 
“polymers” assuming (of course) that the particles have internal structure (think 
monomers).  
 

 
Figure 1: Schematic representation of the coordinate system showing a pair of scatterers 
that belong to two different polymer coils. 
 
The inter-distance between the scattering pair j2i1r

r  can be expressed as 

12j2i1j2i1 RSSr
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++−=  and the inter-particle average can be split into the following parts:  
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The first two averages are within single particles and the third average is across particles. 
The summations become: 
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The form factor amplitude is defined as: 
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The single-particle form factor itself is defined as: 
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For uniform density particles, the following relation holds 2|)Q(F|)Q(P = . This is not 
true, however, for non-uniform density object such as polymer coils.  
 
An inter-particle structure factor is defined as: 
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The cross section can therefore be written as follows: 
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Note that the statistical average ( ) >< j2i1r.Qiexp rr  involves integration over the following 

probability distribution )R,r,r(P 12j2i1
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The cross section for systems in this case is given by: 
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This result applies to systems with non-spherical symmetry and non-uniform density such 
as polymers. Polymer are, however, so highly entangled that an inter-chain structure 
factor SI(Q) is meaningless except for dilute solutions whereby polymer coils do not 
overlap. Inter-chain interactions for polymer systems are better handled using other 
methods described below.  
 
Uniform density scatterers (such as particles) are characterized by 2|)Q(F|)Q(P = , so 
that: 
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Defining a particles’ volume fraction as φ = Nnv/V, the following result is obtained: 
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This is a well-known result. It is included here even-though it does not apply to polymer 
systems so that the derivation does not have to be repeated when covering scattering from 
particulate systems later. Note that the scattering factor S(Q) and the inter-particle 
structure factor SI(Q) should not be confused; S(Q) has the dimension of a volume 
whereas SI(Q) is dimensionless.  
 
 
3. THE PAIR CORRELATION FUNCTION 
 
Recall the definition for the inter-particle structure factor for a pair of particles (named 1 
and 2): 
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r
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given that particle α at the origin. When the self term (α = β) is omitted, this result 
becomes: 
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The probability )R(P 12

r
 is referred to as the pair correlation function and is often called 

)R(g 12

r
. Removing the forward scattering term yields the following well known result: 
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The last term (containing the Dirac Delta function) is irrelevant and can be neglected. 
This last equation shows that 1)Q(SI −  and 1)R(g 12 −

r
 are a Fourier transform pair. Note 

that )R(g 12

r
 peaks at the first nearest-neighbor shell and goes asymptotically to unity at 

large distances. The total correlation function is introduced as 1)R(g)R(h 1212 −=
rr

.  
 
 
4. POLYMER SOLUTIONS 
 
In the case of polymer solutions, the Zimm single-contact approximation (Zimm, 1946; 
Zimm, 1948) is a simple way of expressing the inter-polymer structure factor. Within that 
approximation, the first order term in a “concentration” expansion is as follows: 
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vex is a dimensionless factor representing interactions. The cross section becomes an 
expansion: 
 

 ( ) ⎥⎦
⎤

⎢⎣
⎡ +−ρΔ=

Ω
Σ ...)Q(S

V
v

)Q(S
d

)Q(d 2
0

ex
0

2 .   (25) 

 
This expansion can be resumed as follows ( )x11...xx1 2 +=+−  to yield: 
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The bare structure factor for non-interacting polymers has been defined as: 
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Resuming the series extends the single-contact approximation’s applicability range to a 
wide concentration regime. The single-contact approximation applies best to semi-dilute 
solutions.  
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Figure 2: Typical interactions that are included and those that are excluded within the 
single-contact approximation.  
 
 
5. THE ZERO CONTRAST METHOD 
 
The zero contrast (or scattering length density match) method also called the high 
concentration method for polymer systems consists of using a mixture of deuterated and 
non-deuterated polymers and deuterated and non-deuterated solvents in order to isolate 
the single-chain form factor; i.e., in order to cancel out the inter-chain interaction terms. 
The scattering cross section for a polymer solution containing both deuterated and non-
deuterated polymers is given by: 
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The scattering length density differences between the deuterated (or hydrogenated) 
polymer and the solvent are: 
 

Excluded Interactions 

Included Interactions 
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The various partial scattering factors are split into single-chain parts and inter-chain parts 
as follows: 
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Note that the inter-chain structure factors could be negative depending on the volume 
fraction. Assume that deuterated and hydrogenated polymers have the same degree of 
polymerization ( PHD nnn == ), and the same specific volume ( PHD vvv == ), and 
define the polymer volume fraction as HDP φ+φ=φ . The contrast match method consists 
in varying the relative deuterated to hydrogenated volume fraction but keeping the total 
polymer volume fraction constant.  
 
Define the following “average of the square” and “square of the average” polymer 
contrast factors: 
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The scattering cross section becomes: 
 

 { } { } )Q(PvnB)Q(PvnB
d

)Q(d
IPPP

2
PSPPP

2
P φΔ+φΔ=

Ω
Σ  

 
  { } { }( ) { } )Q(PvnB)Q(PvnBB TPPP

2
PSPPP

2
P

2
P φΔ+φΔ−Δ= . (32) 

 
The following definition has been used: 
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Note the following simplifications: 
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The final result follows: 
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Setting the second contrast factor (between the polymer and the solvent) to zero cancels 
the second term containing PT(Q) leaving only the first term containing the single-chain 
form factor PS(Q). This zero contrast condition is therefore: 
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Note that in general in order to achieve this condition, the solvent must also consist of 
mixtures of deuterated and non-deuterated solvents. Defining the following four indices 
DP, HP, DS, and HS for deuterated polymer, non-deuterated (hydrogenated) polymer, 
deuterated solvent and non-deuterated solvent, the contrast match condition becomes in 
the general case: 
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Note that φDP + φHP = φP , φDS + φHS = φP and φP + φS = 1.  
 
 
6. THE RANDOM PHASE APPROXIMATION 
 
The random phase approximation (de Gennes, 1979, Akcasu-Tombakoglu, 1990; 
Hammouda, 1993; Higgins-Benoit, 1994) is a simple mean-field approach used to 
calculate the linear response of a homogeneous polymer mixture following a 
thermodynamic fluctuation. Consider a binary mixture consisting of a mixture of 
polymers 1 and 2 with fluctuating densities n1(Q) and n2(Q). The interaction potentials 
between monomers 1 and 2 are W11, W12, W21 and W22. Assume an external perturbation 
represented by potentials U1 and U2 and a constraint u that helps apply the 
incompressibility assumption. The parameter u can be thought of as a Lagrange 
multiplier in an optimization problem with constraints. The constraint here is the 
incompressibility condition. The linear response equations follow: 
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The last equation represents the incompressibility constraint. The non-interacting or 
“bare” structure factors )Q(S0

11  and )Q(S0
22  have been defined. These equations have 

assumed that no copolymers are present in the homogeneous mixture; i.e., that 
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In order to solve the set of linear equations, we extract the perturbing potential u from the 
second equation and substitute it into the first equation to obtain: 
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This applies along with the following equation representing the response of the fully 
interacting system: 
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The factor v11(Q) and the Flory-Huggins interaction parameter χ12 are defined as: 
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Here v0 is a reference volume (often taken to be 210 vvv = ).  
 
The RPA result for a homogeneous binary blend mixture follows: 
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Rg1 is the radius of gyration. The incompressibility assumption yields the simplifying 
relations: 
 
 )Q(S)Q(S)Q(S)Q(S 122211 =−== .    (43) 
 
The scattering cross section is given by: 
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This is the so-called de Gennes formula representing the scattering cross section for 
polymer blends in the single-phase (mixed phase) region. This is based on the Random 
Phase Approximation that applies for long degree of polymerizations (n1>>1 and n2>>2) 
and far from the phase boundary condition. This approach does not apply inside the 
demixed phase region.  
 
This formalism also applies to polymer solutions by replacing one of the polymers (say 
component 2) by solvent; i.e., by setting n2 = 1 and P2(Q) = 1. In the case of polymer 
solutions, the excluded volume effect is included in the polymer form factor P1(Q). Note 
that the second virial coefficient can be defined for polymer solutions as 

2)0Q(vA 112 == .  
 
The phase separation condition is achieved when the scattering intensity “blows up”; i.e., 
in the limit ∞→= )0Q(S11 . This is achieved for 
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This is the so-called spinodal condition. Note that with the simplifying assumptions that 
n1 = n2 = n, v1 = v2 = v0 and φ1 = φ2 = 0.5, the spinodal condition for polymer blends 
simplifies to 2n12 =χ .  
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7. THE ISOTHERMAL COMPRESSIBILITY FACTOR 
 
Most mixed polymer systems have finite compressibility. The scattering cross section 
consists of a Q-dependent coherent scattering term which is a good monitor of the 
structure, a Q-independent incoherent scattering term (mostly from hydrogen scattering), 
and another Q-independent “isothermal compressibility” term expressed as: 
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Here Δρ2 is the contrast factor, kBT is the temperature in energy units and χT is the 
isothermal compressibility which is defined as: 
 

 
T

T P
V

V
1

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=χ .      (47) 

 
The isothermal compressibility term is usually small compared to the other terms. For 
example, χT = 4.57*10-4 cm3/J for pure water at 25 oC and atmospheric pressure (Weast, 
1984). χT is set equal to zero altogether for incompressible mixtures.  
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QUESTIONS  
 
1. What is the primary effect of the incompressibility assumption on the scattering cross 
section? 
2. If an incompressible polymer solution is characterized by one (independent) structure 
factor, how many structure factors describe the equivalent compressible solution? 
3. What is the Zimm single-contact approximation? 
4. Does the inter-chain structure factor (with excluded volume) for dilute polymer 
solutions tend to increase or decrease the scattering intensity at low-Q? 
5. What is the use of the zero contrast condition in concentrated polymer systems? What 
is the procedure to follow? 
6. The Random Phase Approximation applies in what conditions? 
7. What is the origin of monomer/monomer interactions in polymer mixtures? 
8. Are polymer chains in mixed polymer blends characterized by excluded volume; i.e., 
are they swollen? 
9. What is the pair correlation function g(r)? 
10. Estimate kBTχT (χT is the isothermal compressibility) for pure water for 25 oC and 1 
atmosphere pressure.  
 
 
ANSWERS 
 
1. The primary effect of the incompressibility assumption is to simplify the scattering 

cross section from its full form )Q(S2)Q(S)Q(S
d
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relating the various partial structure factors )Q(S)Q(S)Q(S)Q(S SPPSSSPP −=−== .  
2. An incompressible polymer solution is characterized by one structure factor SPP(Q). 
The equivalent compressible polymer solution is described by three structure factors: 
SPP(Q), SSS(Q) and SPS(Q).  
3. The Zimm single-contact approximation assumes that inter-chain interactions occur 
only through single contacts or chains of single contacts. Double contacts within the same 
chain or between two different chains or higher order contacts are not included.  
4. The inter-chain structure factor (with excluded volume) for dilute solutions decreases 
the scattering intensity at low-Q. Recall the negative sign in Zimm’s single-contact 

approximation formula: ( ) ⎥⎦
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5. The contrast match method is a way to extract single-chain properties (such as the 
radius of gyration) from concentrated polymer systems. This method consists in using a 
mixture of deuterated and non-deuterated polymers and deuterated and non-deuterated 
solvents in the zero average contrast condition. This involves varying the deuterated to 
non-deuterated polymer fraction but keeping the total polymer fraction constant.  
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6. The Random Phase Approximation applies for high molecular weight polymers in the 
single-phase (mixed phase) region. It does not apply in the demixed phase region.  
7. Monomers interact with each other and with organic solvent molecules due to Van der 
Waals interactions mostly. Hydrogen bonding dominates in water-soluble polymers.  
8. Polymer coils follow random walk statistics in mixed polymer blends. They are not 
swollen like in polymer solutions. Their form factor is the well-known Debye function.  
9. The pair correlation function g(r) is the probability of finding a scatterer at a radial 
distance r from another scatterer at the origin.  
10. kBT = 1.38*10-23 [J.K-1]*295 [K] = 4.112*10-21 [J] and χT = 4.57*10-4 cm3/J so that 
kBT χT = 1.879*10-24 cm3.  
 


