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Chapter 19 - THE SMEARING EFFECT 
 
 

In analyzing SANS data, smearing of the model function used is necessary before 
performing nonlinear least-squares fits. The smearing procedure involves a convolution 
integral between the resolution function and the scattering cross section for the scattering 
model.  
 
 
1. THE RESOLUTION FUNCTION 
 
Consider a 1D Gaussian resolution function (Barker-Pedersen, 1995):  
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This distribution is normalized to 1. ∫
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∞−

= 1)Q(PdQ xD1x . 

 
In order to show this normalization, make a variable change to 2

xQX = so that 

xxdQQ2dX =  and the normalization integral becomes as follows.  
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The following integral is used: 
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This verifies that the P1D(Qx) distribution is normalized. The Qy distribution is similar. 
 
Consider a 2D Gaussian resolution function:  
 

)Q(P)Q(P)Q(P yD1xD1D2 =      (4) 
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This distribution is also normalized to 1. 



 2

 

 ∫ ∫
+∞

=φ
0

D2

π2

0

1)Q(PdQdQ       (5) 

 
In order to show this, make a variable change to 2QR = and QdQ2dR = so that the 
normalization integral becomes as follows. 
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2. THE RESOLUTION CORRECTION 
 
The smeared 1D cross section corresponds to radially averaged SANS data and is given 
by the following integral (using polar coordinates): 
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The smeared 2D cross section integral corresponds to 2D SANS data and is given by the 
following expression: 
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Note that (Qx,Qy) are in Cartesian coordinates. In cases where radial averaging of the data 
is not possible, the 2

Qxσ  and 2
Qyσ  variances are needed. Note that the variance 

2
Qy

2
Qx

2
Q σ+σ=σ  is never used.   
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Figure 1: Parametrization in the detector plane. 
 
 
3. ISO-INTENSITY CONTOUR MAPS WITH GRAVITY EFFECT 
 
Gravity effect on the neutron trajectory distorts the iso-intensity contour maps from 
concentric circles to concentric oval shapes. The following parametric equation describes 
an elliptical shape:  
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Here a is the minor (horizontal) axis and a+b is the major (vertical) axis of the elliptical 
shape. If we consider different major axes for the top and bottom parts, an oval shape is 
obtained. 
 
 ))y(sign2(Ab 2λΔ−λΔλ= .     (10) 
 
The top and bottom parts have been represented using the sign function. The x and y 
coordinates can be expressed as: 
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 )cos()(rx φφ=       (11) 
 )sin()(ry φφ= . 
 
φ is the azimuthal angle for binning in the detector plane. Combining these equations, one 
obtains the following parametric equation: 
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This represents the equal-Q contours for the constant-Q binning. Note that the gravity 
contribution is constant (independent of Q) so that the contours are oval at very low Q, 
become elliptical at intermediate Q then become circular at high Q.  
 
 
4. NUMERICAL APPLICATION 
 
Consider the following realistic case: 
 
 L1 = 16.14 m       (13) 
 L2 = 13.19 m 
 Å 18=λ  

 13.0
λ
Δλ

=  

 2cm/Å 01189.0A =  
 
This gives  
 

λmin = 15.66 Å , λmax = 20.34 Å .  
 
The following beam spot characteristics are obtained: 
 
 cm 916.2ymin = , cm 919.4ymax =  
 cm 852.3y = , cm 863.3y >=<  
 cm 0667.1yyy maxtop =−=Δ  
 cm 9365.0yyy minbot =−=Δ  
 
Here y  is the spot height corresponding to the mean wavelength λ  and >< y  is the 
vertical location of the beam center. Note that for any practical purpose >=< yy  and the 
difference cm 130.0yy bottop =Δ−Δ  is so small that the oval shapes are really elliptical.  
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The beam standard deviation in the vertical direction is estimated to be cm 409.0y =σ  
using both the numerical integration over y and the analytical averaging over λ (formula 
given above).  
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Figure 2: Iso-intensity contour map when neutrons are under the influence of gravity; i.e., 

at long wavelength (λ = 18 Å) and typical wavelength spread (
λ
Δλ = 13 %). Contours 

corresponding to a = 0.5 cm and k = 1, 5, 10, 15 and 20 are shown. The x and y axes are 
in channel numbers (each detector channel corresponds to 0.5 cm).  
 
  
5. SMEARING FOR HARD SPHERES 
 
Consider idealized scattering from hard spheres and compare it to the smeared case. The 
form factor for a hard sphere of radius R = 50 Å is given by the following function: 
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Consider the following high-Q configuration: 
 
 R1 = 2.5 cm       (15) 
 R2 = 0.5 cm 
 Δx3 = Δy3 = 0.5 cm 
 L1 = 1.5 m 
 L2 = 1.5 m 
 λ = 6 Å 

 
λ
Δλ = 15 %. 

 
The direct beam spatial resolution on the detector plane is: 
 

 σx
2 = 1.83 cm2       (16) 

 σy
2 = 1.83 cm2. 

 
The variance of the Q resolution is:  
 
 2

x
52

Qx Q 0037.010*94.8 +=σ −  (in units of Å-2)  (17) 
2

y
52

Qy Q 0037.010*94.8 +=σ −  (in units of Å-2) . 
 
The wavelength spread contribution dominates for this high-Q configuration. The gravity 
contribution is negligible for the 6 Å wavelength.  
 
For this high-Q configuration,  
 
 Qmin

X = Qmin
Y = 0.028 Å-1.     (18) 
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Figure 3: Plot of the form factor for a sphere of radius R = 50 Å before and after smearing 
produced by the high-Q configuration.  
 



 8

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0 0.05 0.1 0.15 0.2 0.25 0.3

σ
Q
 calculated

σ
Q

Q (Å-1)

Q
min

 
Figure 4: Variation of the standard deviation of the Q resolution vs Q.  
 
Consider the following low-Q instrument configuration and spheres of radius R = 500 Å.  
 
 R1 = 2.5 cm       (19) 
 R2 = 0.5 cm 
 Δx3 = Δy3 = 0.5 cm 
 L1 = 15 m 
 L2 = 15 m 
 λ = 12 Å 

 
λ
Δλ = 15 %. 

 
Therefore: 
 
 A = 0.0138 cm/Å2      (20) 
 σx

2 = 1.83 cm2 
 σy

2 = 1.83 cm2 
 
So that: 
 
 2

x
72

Qx Q 0037.010*23.2 +=σ −  (in units of Å-2)  (21) 
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 2
y

72
Qx Q 0037.010*31.2 +=σ −  (in units of Å-2).   

 
The first term is slightly different for σQx and σQy because of the small gravity 
contribution. For this configuration, the geometry part dominates at low-Q, the 
wavelength-spread part contributes at higher Q, and the gravity term is small.  
 
For this low-Q configuration,  
 
 Qmin

X = 0.0014 Å-1,       (22) 
 Qmin

Y = 0.0016 Å-1.  
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Figure 5: Plot of the form factor for a sphere of radius R = 500 Å before and after 
smearing produced by the low-Q configuration. 
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Figure 6: Plot of the standard deviation of the Q resolution for both the low-Q and the 
high-Q configurations. The values of Qmin are also indicated.  
 
 
6. SANS FROM SILICA PARTICLES 
 
SANS data have been taken from a dilute solution of monodisperse silica particles in D2O 
(volume fraction of 0.1 %) and fit to the sphere model. Fit results gave a sphere radius of 
R = 563.51 ± 0.45 Å. SANS data were taken using a low-Q instrument configuration.  
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Figure 7: SANS data from a dilute solution of monodisperse silica particles in D2O along 
with the fit to the sphere model.  
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QUESTIONS 
 
1. What are the two ways of accounting for instrumental resolution? 
2. Is it OK to perform a 1D smearing convolution integral on 2D SANS data?  
3. What is the effect of instrumental smearing on the radius of gyration obtained from a 
Guinier fit? 
4. What are the two ways of correcting for the effect of gravity? 
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ANSWERS 
 
1. Instrumental resolution is included either (1) by smearing of the model used to fit the 
data or (2) by desmearing the data through an iterative process. Method (1) is the most 
reliable and the most used. Method (2) does not work well when sharp peaks appear in 
the data.  
2. It is OK to perform a 1D smearing convolution integral if the 2D SANS data are 
azimuthally symmetric (scattering is isotropic).  
3. Instrumental resolution tends to broaden peaks. The Guinier region is the tail of a peak 
at Q = 0. Broadening implies a lower slope and therefore a lower radius of gyration. The 
smeared radius of gyration is lower than the real value.  
4. Gravity correction can be made (1) through a software method by defining constant-Q 
elliptical bins or (2) through a hardware method using gravity-correcting prisms.  
 


