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Chapter 15 - THE SANS INSTRUMENTAL RESOLUTION 
 
 

Instrumental smearing affects SANS data. In order to analyze smeared SANS data, either 
de-smearing of the data or smearing of the fitting model function is required. The second 
approach is more common because it is a direct method. Smearing corrections use the 
instrumental resolution function. 
 
 
1. THE RESOLUTION FUNCTION 
 
Instrumental smearing is represented by the following 1D convolution smearing integral 
(suitable for radially averaged data): 
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Here Q is the scattering variable, 
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 is the scattering cross section and the 1D 

resolution function is defined as a Gaussian function: 
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The Q standard deviation σQ is a measure of the neutron beam spot size on the detector 
(Q = 0). It is also a measure of the instrumental part of the width of scattering peaks from 
samples (Q ≠ 0). σQ is related to the spatial standard deviation (i.e., standard deviation of 
the neutron beam spot at the detector) σr by σQ = (2π/λL2)σr, where L2 is the sample-to-
detector distance.  
 
 
2. VARIANCE OF THE Q RESOLUTION 
 
Scattering measurements are made in reciprocal (Fourier transform) space where the 
magnitude of the scattering vector is given by: 
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Here λ is the neutron wavelength and θ is the scattering angle. At small angles, Q is 
approximated by: Q = 2πθ/λ.  
 
In order to express σQ, differentiate Q on both sides: 
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Take the square: 
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Then perform the statistical averages: 
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Note that ( )( ) ( ) ( ) >λ><θθ>=<λθθ< dddd  because the scattering angle θ and the 
wavelength λ distributions are uncorrelated. Moreover,  

( ) 0)(d >=λ<−>λ>=<>λ<−λ>=<λ< . This cancels out the last term.  
 
Define the different variances: 
 
 σQ

2 = <(dQ)2>=<Q2>-<Q>2,  
 σθ

2 = <(dθ)2>=<θ2>-<θ>2,  
 σλ

2 = <(dλ)2>=<λ2>-<λ>2     (7) 
 
The SANS resolution variance has two contributions: 
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These correspond to the “geometry” part (first term) and to the “wavelength spread” part 
(second term) of the Q resolution variance.  
 
 
3. SANS RESOLUTION VARIANCE 
 
The main parts of the resolution variance σQ

2 are derived for a SANS instrument with 
circular apertures (Mildner-Carpenter, 1984; Mildner et al, 2005).  
 
 
Geometry Contribution to the Q Resolution 
 
Consider the geometry contribution to the Q resolution variance: 
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L2 is the sample-to-detector distance. The variance for the radially averaged data 
corresponds to 1D. The 1D case of σx

2 (in the horizontal x direction) is considered first.  
 

 
 
Figure 1: Typical SANS geometry with circular source and sample apertures and 2D area 
detector. This figure is not to scale. The horizontal scale is in meters whereas the vertical 
scale is in centimeters. Aperture sizes have been drawn out of scale compared to the size 
of the area detector.  
 
Consider a uniform neutron distribution within the source and sample apertures. The 
horizontal contribution can be written: 
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L1 is the source-to-sample distance, L2 is the sample-to-detector distance, <x2>1 is the 
averaging over the source aperture, <x2>2 is the averaging over the sample aperture and 
<x2>3 is the averaging over a detector cell. R1 and R2 define the source and sample 
aperture radii respectively. In order to see the origin of the (L2/L1) scaling factor, consider 
the case where R2 = 0. Then the spot at the detector would be similar to the source 
aperture size scaled by (L2/L1). Similarly, in order to see the origin of the (L1+L2)/L1 
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scaling factor, consider the case of R1 = 0. The spot would be similar to the sample 
aperture size scaled by (L1+L2)/L1.  
 

  
Figure 2:  Geometry of the circular source aperture. 
 
The various averages can be readily calculated: 
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Similarly <x2>2 = 
4

R 2
2 . Averaging over the square (or rectangular) detector cell of sides 

Δx3 and Δy3 follows. 
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Therefore: 
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Similarly for the vertical part (assuming no effect of gravity on the neutron trajectory): 
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So that: 
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This is the first part of the Q resolution variance. 
 
 
Wavelength Spread Contribution to the Q Resolution 
 
The neutron wavelength is assumed to obey a triangular distribution peaked around λ and 
of full-width at half maximum Δλ.  
 

 
Figure 3: Triangular wavelength distribution.  
 
This is a typical distribution outputted by a velocity selector. For simplicity of notation, 
the same symbol λ is used to denote both the wavelength variable λ and the average 
wavelength <λ>. The average over this wavelength distribution can be readily calculated 
as: 
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Note that if we had assumed a square (also called “box”) wavelength distribution, the 
factor of 1/6 would be replaced by 1/12.  
 
The wavelength variance is therefore: 
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The wavelength spread contribution to the Q resolution variance is therefore as follows: 
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This is the second part of the Q resolution variance.  
 
 
Neutron Trajectories 
 
Gravity affects neutron trajectories. Consider neutrons of wavelength λ and wavelength 
spread Δλ incident on the source aperture. The initial neutron velocity is v0 with 
components v0y and v0z along the vertical and horizontal directions.  
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Figure 4: Parabolic neutron trajectory under gravity effect. Neutrons must cross the 
source and sample apertures. This figure is not to scale.  
 
Under the effect of gravity, neutrons follow the following trajectories: 
 
 tvz z0=        (19) 
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Here g is the gravity constant (g = 9.81 m/s2) and t is time. Neutrons are assumed to be at 
the horizontal axis origin at time zero. In order to obtain the neutron trajectories equation, 
the time variable is eliminated using the fact that neutrons must cross the source and 
sample apertures; i.e., the condition y = y0 for z = 0 and for z = L1. This gives: 
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The horizontal neutron speed v0z is related to the neutron wavelength λ by:  
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mλ
hv z0 = .       (21) 

 
Here also, h is Planck’s constant and m is the neutron mass. At any other position along 
the neutron path (other than z = 0 and z = L1), the parabolic variation followed is: 
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where: 
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The neutron fall trajectory is characterized by a parabolic variation with respect to z and 
with respect to λ.  
 
For z = L1+L2, neutrons fall by the distance y(L1+L2) = y0 - B λ2 L2(L1+L2).  
 
 
Effect of Gravity on the Q Resolution 
 
Gravity affects the fall of the neutron and therefore the resolution in the y direction. 
Neutron trajectories follow a parabola: 
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g is the gravitation constant (g = 9.81 m/s2), m is the neutron mass and h is Plank’s 
constant (h/m=3995 Å.m/s). A= 3.073*10-7 L2(L1+L2) given in units of m/Å2 where L1 
and L2 are the source-to-sample and sample-to-detector distances given in meters.  
 
The gravity contribution to the Qy variance is given by: 
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The two averages over the triangular wavelength distribution are performed as follows: 
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So that: 
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and finally: 
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This term is added in quadrature with the other two contributions (geometry and 
wavelength spread) to the Q resolution variance σQ

2.  
 
 
Summary of the Q Resolution 
 
Putting the geometry contribution, the wavelength spread contribution and the gravity 
contribution together yields: 
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 R1: source aperture radius 
 R2: sample aperture radius 
 Δx3 and Δy3: sides of the detector cell 
 L1: source-to-sample distance 
 L2: sample-to-detector distance 
 Δλ: wavelength spread, FWHM of triangular distribution function 
 g: gravity constant 
 m: neutron mass 
 h: Planck’s constant. 
 
This result was obtained assuming a uniform neutron distribution within the apertures and 
a triangular wavelength distribution.  
 
 
4. MINIMUM Q 
 
A figure of merit for SANS instruments is the minimum value of the scattering variable 
Q (also called Qmin) that can be reached for a given configuration. This value is imposed 
by the neutron spot size on the area detector and dictates the size of the beamstop to be 
used. In order to minimize the spot size, one has to minimize the “umbra” and 
“penumbra” of the neutron beam.  
 

 
 
Figure 5: Converging collimation geometry to minimize spot size. This figure is not to 
scale. The penumbra is the maximum spot size to be blocked by the beamstop.  
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Given the standard SANS geometry, the extent of the penumbra in the horizontal 
direction is given by: 
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And the minimum Q in the horizontal direction is therefore Qmin

X
 = (2π/λ)(Xmin/L2).  

 
In the vertical direction, the effect of gravity plays a role. The upper edge of the 
penumbra moves down by A(λ−Δλ)2 because it corresponds to faster neutrons with 
wavelength λ-Δλ. The lower edge of the penumbra drops down by more; i.e., by 
A(λ+Δλ)2 because it corresponds to slower neutrons with wavelength λ+Δλ. This results 
in a distorted beam spot at the detector. To first order in wavelength spread, one obtains: 
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Note that Qmin is determined by the spot size in the vertical direction where the beam is 
the broadest Qmin = Qmin

Y
 = (2π/λ)(Ymin/L2). 
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Figure 6: Neutron spot on the detector. The effect of gravity is to drop both the upper 
edge and the lower edge of the penumbra. The lower edge drops more resulting in 
distorted iso-intensity contours.  
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5. MEASURED SANS RESOLUTION 
 
Specific Instrument Configuration 
 
Consider the following low-Q instrument configuration.  
 
 L1 = 16.14 m 
 L2 = 13.19 m 
 R1 = 0.715 cm 
 R2 = 0.635 cm 
 Δx3 = Δy3 = 0.5 cm 

 
λ
Δλ = 0.13.         

 
This gives a gravity fall parameter of A = 0.01189 cm/Å2. This configuration does not 
strictly obey the “cone rule” whereby the beam spot umbra at the detector is minimized.  
 
Assuming a neutron wavelength of λ = 6 Å, the variance σQ

2 has the following Q 
dependence:  
 
 )Å(Q0028.010*55.5 2272

Q
−− +=σ .    (34) 

 
The minimum scattering variable is: 
 
 -1

min Å0017.0Q = .      (35) 
 
Gravity effects are small for 6 Å neutrons. Neutrons fall by only 0.428 cm.  
 
The focus here will be on empty beam measurement (i.e., with no sample in the beam). 
This corresponds to the resolution limit of Q = 0.  
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Figure 7: Variation of σQ

2 with Q plotted on a log-log scale. The main contributions 
(geometry, wavelength spread and gravity effect) are added in quadrature.  
 
 
Empty Beam Measurements 
 
Empty beam measurements were made using the above instrument configuration and 
varying the neutron wavelength.  
 
Predicted and measured resolution characteristics are compared in a series of figures. 
First, the position of the beam spot on the detector is plotted for increasing wavelength.  
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Figure 8: Variation of the horizontal and vertical neutron beam spot positions with 
wavelength.  
 
Next, the standard deviations σx and σy of the neutron spot size are plotted with 
increasing neutron wavelength. The measured values were obtained by performing non-
linear least-squares fits to a Gaussian function in the x and in the y directions. Fits were 
performed on cuts through the beam spot center, both horizontally and vertically. Data 
recorded by two adjacent detector cells (normal to the cut) were added in each case in 
order to improve statistics. A scaling factor of 45.1 = 1.2 was used to scale the 
measured data. This scaling factor gave good agreement between the measured and 
calculated values for σx. The same scaling factor was used for σy.  
 
This necessary scaling factor of 1.2 is probably related to the procedure used to obtain 
measured beam spot widths. (1) Slice cuts were performed in the horizontal and vertical 
directions. (2) Gaussian fits were performed on these slices even though the beam profile 
is known to be close to a trapezoidal (not Gaussian) shape. (3) Lastly, the measured beam 
spots were so small (covering only a few detector cells) that Gaussian fits were 
performed with four to eight points only.  
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Figure 9: Variation of the measured and calculated neutron beam spot size standard 
deviations σx and σy with increasing wavelength.  
 
The minimum spot sizes Xmin and Ymin were obtained experimentally as the values where 
the intensity (of the horizontal or vertical cuts across the beam spot) goes to zero. This 
method is conservative and overestimates the measured values for Xmin. It is not precise, 
yielding poor agreement between measured and calculated values. Our calculated values 
neglect for instance diffuse scattering from the beam defining sample aperture and from 
the pre-sample and post-sample neutron windows. Such scattering tends to broaden the 
neutron beam. At long wavelengths, the gravity effect broadens the neutron spot in the 
vertical direction with the extra difference Ymin-Xmin given by the term 2Aλ2(Δλ/λ).  
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Figure 10: Variation of the neutron beam spot sizes in the horizontal and vertical 
directions with increasing wavelength.  
 
 
6. DISCUSSION 
 
The choice of a SANS instrument configuration is always a compromise between high 
intensity and good resolution. The instrumental resolution is the main source of data 
smearing. Estimation of the SANS resolution is an integral part of the data reduction 
process. Reduced SANS data include not only the scattering variable Q and the scattered 
intensity I(Q), but also the resolution standard deviation σQ. σQ is needed to smear 
models before fitting to the data.  
 
Corrections for smearing due to gravity are never made because they are small and 
deemed to be complex manipulations of the 2D data. The effect of gravity smearing is 
small except at long neutron wavelengths. Fortunately, the wide majority of experiments 
maximize flux by using low wavelengths (5 Å or 6 Å).  
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QUESTIONS 
 
1. What is the relationship between the standard deviation and the variance of a peaked 
function? 
2. What function best describes the wavelength distribution function after the velocity 
selector? 
3. What is the shape of the penumbra of the neutron beam spot on the detector? 
4. Given a Gaussian function, what is the relationship between its FWHM and its 
standard deviation σ? 
5. Calculate the following average <λ2> over a triangular wavelength distribution. 
Calculate <λ2> over a Gaussian wavelength distribution of standard deviation σλ.  
6. What are the various contributions to the SANS instrumental resolution? 
7. The gravity effect is worse at what wavelength range? 
8. What is the shape of the neutron beam spot on the detector for long wavelengths? 
9. Cold neutrons of 20 Å wavelength fall by how much over a distance of 30 m? 
10. Name the main “figures of merit” for a SANS instrument.  
11. How would you obtain a lower Qmin? 
 
 
ANSWERS 
 
1. The variance σQ

2 is the square of the standard deviation σQ.  
2. The wavelength distribution after the velocity selector is best described by a triangular 
function.  
3. The neutron beam spot on the detector has a shape close to trapezoidal.  
4. For a Gaussian distribution, the following relationship holds FWHM = 2 )2ln(2 σ. In 
order to derive this relation, consider a Gaussian function P(x) = (1/2πσ2)1/2 exp(-x2/2σ2) 
with standard deviation σ. Setting P(x) = ½, two solutions can be found for x = 
± )2ln(2 σ. This yields a band FWHM = 2 )2ln(2 σ = 2.355σ.  
5. The integrations are simple. Only the results are given.  
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6. The SANS instrumental resolution contains contributions from (1) “geometry” (source, 
sample aperture and detector cell sizes and source, sample and detector inter-distances), 
(2) from “wavelength spread” and (3) from “gravity” effect. Remember that [σQ

2]geo ~ 
constant, [σQ

2]wav ~ Q2(Δλ/λ)2 and [σQ
2]grav ~ λ4(Δλ/λ)2.  

7. The effect of gravity is worse for longer wavelengths.  
8. Neutrons fall more at the bottom of the neutron beam than at the top. For this reason, 
beam spot iso-intensity contour maps are weakly elliptical (weakly oval actually).  
9. Cold neutrons of 20 Å wavelength fall by about 4 cm over a distance of 30 m (see 
Figure 8).  
10. Typical figures of merit for SANS instrument include: resolution σQ, Qmin, flux-on-
sample, Q-range (called ΔQ) and background level.  
11. A lower Qmin could be obtained by increasing the sample-to-detector distance. When 
this distance is at its maximum, then one could increase the neutron wavelength. The 
reason for this is that the beam intensity (1) decreases as sample-to-detector distance 
square but (2) it decreases as neutron wavelength to the fourth power.  
 


